To: neolib who wrote (20237 ) 2/11/2008 1:07:33 PM From: Thomas A Watson Respond to of 36917 on silence -of neolib -or the liar What is wrong with this OISM explanation? GLOBAL WARMING HYPOTHESIS The greenhouse effect amplifies solar warming of the earth. Greenhouse gases such as H2O, CO2, and CH4 in the Earth's atmosphere, through combined convective readjustments and the radiative blanketing effect, essentially decrease the net escape of terrestrial thermal infrared radiation. Increasing CO2, therefore, effectively increases radiative energy input to the Earth's atmosphere. The path of this radiative input is complex. It is redistributed, both vertically and horizontally, by various physical processes, including advection, convection, and diffusion in the atmosphere and ocean. Figure 18: Qualitative illustration of greenhouse warming. "Present GHE" is the current greenhouse effect from all atmospheric phenomena. "Radiative effect of CO2" is the added greenhouse radiative effect from doubling CO2 without consideration of other atmospheric components. "Hypothesis 1 IPCC" is the hypothetical amplification effect assumed by IPCC. "Hypothesis 2" is the hypothetical moderation effect. When an increase in CO2 increases the radiative input to the atmosphere, how and in which direction does the atmosphere respond? Hypotheses about this response differ and are schematically shown in Figure 18. Without the water-vapor greenhouse effect, the Earth would be about 14 ºC cooler (81). The radiative contribution of doubling atmospheric CO2 is minor, but this radiative greenhouse effect is treated quite differently by different climate hypotheses. The hypotheses that the IPCC (82,83) has chosen to adopt predict that the effect of CO2 is amplified by the atmosphere, especially by water vapor, to produce a large temperature increase. Other hypotheses, shown as hypothesis 2, predict the opposite \u2013 that the atmospheric response will counteract the CO2 increase and result in insignificant changes in global temperature (81,84,85,91,92). The experimental evidence, as described above, favors hypothesis 2. While CO2 has increased substantially, its effect on temperature has been so slight that it has not been experimentally detected. Figure 19: The radiative greenhouse effect of doubling the concentration of atmospheric CO2 (right bar) as compared with four of the uncertainties in the computer climate models (87,93). The computer climate models upon which "human-caused global warming" is based have substantial uncertainties and are markedly unreliable. This is not surprising, since the climate is a coupled, non-linear dynamical system. It is very complex. Figure 19 illustrates the difficulties by comparing the radiative CO2 greenhouse effect with correction factors and uncertainties in some of the parameters in the computer climate calculations. Other factors, too, such as the chemical and climatic influence of volcanoes, cannot now be reliably computer modeled. In effect, an experiment has been performed on the Earth during the past half-century \u2013 an experiment that includes all of the complex factors and feedback effects that determine the Earth's temperature and climate. Since 1940, hydrocarbon use has risen 6-fold. Yet, this rise has had no effect on the temperature trends, which have continued their cycle of recovery from the Little Ice Age in close correlation with increasing solar activity. Not only has the global warming hypothesis failed experimental tests, it is theoretically flawed as well. It can reasonably be argued that cooling from negative physical and biological feedbacks to greenhouse gases nullifies the slight initial temperature rise (84,86). The reasons for this failure of the computer climate models are subjects of scientific debate (87). For example, water vapor is the largest contributor to the overall greenhouse effect (88). It has been suggested that the climate models treat feedbacks from clouds, water vapor, and related hydrology incorrectly (85,89-92). The global warming hypothesis with respect to CO2 is not based upon the radiative properties of CO2 itself, which is a very weak greenhouse gas. It is based upon a small initial increase in temperature caused by CO2 and a large theoretical amplification of that temperature increase, primarily through increased evaporation of H2O, a strong greenhouse gas. Any comparable temperature increase from another cause would produce the same calculated outcome. oism.org 'oism.org