SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Politics : Formerly About Advanced Micro Devices -- Ignore unavailable to you. Want to Upgrade?


To: tejek who wrote (387257)5/29/2008 9:36:39 PM
From: Brumar89  Respond to of 1578643
 
Do you understand the point you are trying to make is a minor one esp. in comparison to what we were discussing?

The whole discussion is of minor importance. It just bothers me to see false statements made about history.

But your point that the cultural achievements of pre-Islamic China and India became Islamic thereby is the bogus point I was pointing out.

Which achievements are in dispute in your mind?

If I recall, the subject of China and India came up when I posted about the pre-Islamic history of algebra (below). Or why else would you have posted about parts of China and India being Islamic:

Circa 1800 BC: The Old Babylonian Strassburg tablet seeks the solution of a quadratic elliptic equation.
Circa 1600 BC: The Plimpton 322 tablet gives a table of Pythagorean triples in Babylonian Cuneiform script.
Circa 800 BC: Indian mathematician Baudhayana, in his Baudhayana Sulba Sutra, discovers Pythagorean triples algebraically, finds geometric solutions of linear equations and quadratic equations of the forms ax2 = c and ax2 + bx = c, and finds two sets of positive integral solutions to a set of simultaneous Diophantine equations.
Circa 600 BC: Indian mathematician Apastamba, in his Apastamba Sulba Sutra, solves the general linear equation and uses simultaneous Diophantine equations with up to five unknowns.
Circa 300 BC: In Book II of his Elements, Euclid gives a geometric construction with Euclidean tools for the solution of the quadratic equation for positive real roots. The construction is due to the Pythagorean School of geometry.
Circa 300 BC: A geometric construction for the solution of the cubic is sought (doubling the cube problem). It is now well known that the general cubic has no such solution using Euclidean tools.
Circa 100 BC: Algebraic equations are treated in the Chinese mathematics book Jiuzhang suanshu (The Nine Chapters on the Mathematical Art), which contains solutions of linear equations solved using the rule of double false position, geometric solutions of quadratic equations, and the solutions of matrices equivalent to the modern method, to solve systems of simultaneous linear equations.
Circa 100 BC: The Bakhshali Manuscript written in ancient India uses a form of algebraic notation using letters of the alphabet and other signs, and contains cubic and quartic equations, algebraic solutions of linear equations with up to five unknowns, the general algebraic formula for the quadratic equation, and solutions of indeterminate quadratic equations and simultaneous equations.
Circa 150 AD: Hero of Alexandria treats algebraic equations in three volumes of mathematics.
Circa 200: Diophantus, who lived in Egypt and is often considered the "father of algebra", writes his famous Arithmetica, a work featuring solutions of algebraic equations and on the theory of numbers.
499: Indian mathematician Aryabhata, in his treatise Aryabhatiya, obtains whole-number solutions to linear equations by a method equivalent to the modern one, describes the general integral solution of the indeterminate linear equation and gives integral solutions of simultaneous indeterminate linear equations.
Circa 625: Chinese mathematician Wang Xiaotong finds numerical solutions of cubic equations.
628: Indian mathematician Brahmagupta, in his treatise Brahma Sputa Siddhanta, invents the chakravala method of solving indeterminate quadratic equations, including Pell's equation, and gives rules for solving linear and quadratic equations.


en.wikipedia.org