To: Elroy Jetson who wrote (103190 ) 6/18/2008 6:37:42 PM From: JimisJim Read Replies (2) | Respond to of 206092 <In regards to nuclear, we will first need to develop a permanent disposal / recycling solution as France has> Not necessarily. Switching to thorium reactors would eliminate the waste problem in the future and even help eliminate existing nuke waste. From Wikipedia (not mentioned in the article is the fact that thorium is way less radioactive and has a half-life of 30 days and is a lot safer -- in fact, the majority of the isotopes have half lives of less than 10 minutes): Thorium as a nuclear fuel Thorium, as well as uranium and plutonium, can be used as fuel in a nuclear reactor. Although not fissile itself, 232Th will absorb slow neutrons to produce (233U), which is fissile. Hence, like 238U, it is fertile. In one significant respect 233U is better than the other two fissile isotopes used for nuclear fuel, 235U and plutonium-239 (239Pu), because of its higher neutron yield per neutron absorbed. Given a start with some other fissile material (235U or 239Pu), a breeding cycle similar to, but more efficient than that currently possible with the 238U-to-239Pu cycle (in slow-neutron reactors), can be set up. The 232Th absorbs a neutron to become 233Th which normally emits an electron and an anti-neutrino to become protactinium-233 (233Pa) and then emits another electron and anti-neutrino by a second ß- decay to become 233U.The irradiated fuel can then be unloaded from the reactor, the 233U separated from the thorium (a relatively simple process since it involves chemical instead of isotopic separation), and fed back into another reactor as part of a closed nuclear fuel cycle. Problems include the high cost of fuel fabrication due partly to the high radioactivity of 233U which is a result of its contamination with traces of the short-lived 232U; the similar problems in recycling thorium due to highly radioactive 228Th; some weapons proliferation risk of 233U; and the technical problems (not yet satisfactorily solved) in reprocessing. Much development work is still required before the thorium fuel cycle can be commercialised, and the effort required seems unlikely while (or where) abundant uranium is available.Nevertheless, the thorium fuel cycle, with its potential for breeding fuel without fast neutron reactors, holds considerable potential long-term benefits. Thorium is significantly more abundant than uranium, and is a key factor in sustainable nuclear energy. One of the earliest efforts to use a thorium fuel cycle took place at Oak Ridge National Laboratory in the 1960s. An experimental reactor was built based on Molten Salt Reactor technology to study the feasibility of such an approach, using thorium-fluoride salt kept hot enough to be liquid, thus eliminating the need for fabricating fuel elements. This effort culminated in the Molten-Salt Reactor Experiment that used 232Th as the fertile material and 233U as the fissile fuel. Due to a lack of funding, the MSR program was discontinued in 1976. In 2007, Norway was debating whether or not to focus on thorium plants, due to the existence of large deposits of thorium ores in the country, particularly at Fensfeltet, near Ulefoss in Telemark county. The primary fuel of the HT3R Project near Odessa, Texas, USA will be ceramic-coated thorium beads.