Excess calcium intake, especially excess ionic calcium intake, and/or without sufficient amounts of the balancing nutrients (primarily magnesium, especially compound complex magnesium), unbalances and disrupts the body process by which calcium is assimilated and properly utilized (calcium metabolism). Chronically unbalanced calcium metabolism can cause calcium to be deposited and stored unnaturally in soft tissues. Unbalanced calcium metabolism is what causes dystrophic calcification, and is the basis for calcified arterial plaque buildup. This is a recent and quite important discovery.
It had been thought that excessive amounts of calcium only overburdened the excretory efforts of the liver and kidneys, induced constipation, and increased the risk of urinary stone formation (kidney stones). With the recent discovery of excessive amounts of unbalanced ionic calcium being the cause of dystrophic calcification of soft tissues, the negative side of calcium is now beginning to be better understood. It is believed that it is the ionic calcium component of calcium that is primarily responsible for dystrophic calcification, rather than the protein-bound calcium component (an excess of which is believed to be adequately handled by the liver and kidneys as long as the excess is not too great). This is supported by strongly mounting evidence in several clinical studies and epidemiological studies. Ionic calcium is distinguished by it containing a positive charge of electricity, hence it being a cation electrolyte, which when unbalanced may give rise to its ability to attract and fuse to soft tissues (such as in arterial plaque formation). It has also been discovered that dystrophic (or metastatic) calcium is deposited at tumor formation sites, as verified by EBCT scan, suggesting a possible link to tumor formation.
Calcium is not used in the sense that it is degraded during its biological functions and then needs to be continually replenished. Rather it is withdrawn from storage, used, and then returned to storage with very little loss. Calcium's use is typified in muscle contractions where it is stored in the endoplasmic reticulum portion of cells, from which it is released when muscle contractions are activated, then it is returned for storage after use.
It is now known that the amount of calcium needed by the human body for its biological functions is less than commonly believed, and is much less than many people in the U.S. are believed to consume. In a landmark study of calcium consumption and arterial disease, entitled: “Is calcium excess in Western diet a major cause of arterial disease?” published in the International Journal of Cardiology, 1991, 33:191-198, by British researcher Dr. Stephen Seely of the Department of Cardiology, University of Manchester, The Royal Infirmary, Manchester, U.K., the daily requirements of the human body for calcium are carefully delineated. The study correlates excess calcium consumption as a major contributory factor of unbalanced calcium metabolism, dystrophic calcification and the formation and buildup of calcified arterial plaque. The study also presents a strong case for a recommended dietary intake of calcium that is below the current Recommended Dietary Allowance (RDA), indicating compelling evidence of negative health consequences of excessive and/or unbalanced calcium ingestion. Included in the study are several supporting epidemiological studies referenced where it has been found that in countries where the calcium intake is within 200-400 mg/day arterial diseases are non-existent, and blood pressure does not increase with age. By contrast, in countries where the calcium intake is around the RDA (800-1200 mg/day) arterial diseases are common, while in countries where the calcium intake is well in excess of the RDA arterial diseases are rampant. The study presents considerable convincing evidence that, except for pregnant women who should get 650 mg/day in their last trimester of pregnancy (and during lactation), a dietary intake of calcium of between 300-400 mg/day for young adults and between 200-300 mg/day for older adults is sufficient to completely satisfy all bodily requirements of most people under normal conditions. These recommendations represent significant differences from the amount of dietary calcium intakes commonly ingested in the U.S., and other countries that consume the typical Western diet, where studies show that typical daily dietary calcium intake totals can reach more than 10 times the study's recommendations (2000-4000 mg/day).
Given the amount of dairy products, calcium enriched foods, calcium supplements and antacids consumed in the U.S., it is easy to see that contrary to current popular dogma the typical American diet contains many times more than the optimum amount of dietary calcium. Dietitians and many doctors apparently consider such levels of calcium consumption normal and desirable without fully understanding or appreciating the consequences of excessive calcium consumption and its connection to unbalanced calcium metabolism, dystrophic calcification and cardiovascular disease.
The RDA for daily calcium intake, set by the Food and Nutrition Board, Commission on Life Sciences, of the National Research Council (indicated on manufactured food package labels as “Percent Daily Value”) are approximately 3-4 times the optimum amounts revealed in the study. However, the Food and Nutrition Board of the National Research Council does recognize and acknowledge in their standard book of RDA that: “many population groups seemingly maintain satisfactory [health] status with much lower intakes of calcium than the RDA.” Another important aspect of calcium intake often overlooked is that the RDA is for “a total calcium intake” from all sources combined (that which is normally ingested in the diet, calcium supplements, and antacids and medications combined each day). It is now known that excessive amounts of total calcium intake, and/or excessive amounts of ionic calcium intake, contribute to unbalanced calcium metabolism, dystrophic calcification, cellular malfunction and calcified arterial plaque buildup in the human body.
It is known that excessive amounts of unbalanced or ionic calcium is also responsible for elevating blood pressure, a recognized part of cardiovascular disease. A typical area prone to arterial calcification is the aorta. The aorta functions by virtue of its elasticity to help provide the blood supply throughout the body during systole, and to the heart during diastole. The heart is unique among the body's organs in its dependence upon the diastolic pressure to provide its blood supply. The diastolic pressure that feeds the heart muscle is dependent upon the elasticity of the aorta, and is driven by the temporarily stored expansion energy provided by the systolic pressure as it expands the aorta. If diastolic pressure is reduced (because of lessened aortic elasticity), the body compensates by elevating the systolic pressure to maintain the diastolic pressure (obviously critical to feed the heart). One of the key factors in maintaining healthy aortic elasticity, in addition to maintaining healthy elasticity of all the blood vessels, is healthy collagen supported by adequate amounts of vitamin C. Lessened aortic elasticity necessitates a higher systolic pressure in an attempt to expand the aorta to its previous normal volume so that the diastolic pressure is not allowed to drop. Calcified arterial plaque buildup in portions of the aorta (typically seen in the aortic arch) reduces its functional elasticity and as a result elevates blood pressure. If calcified arterial plaque buildup is concurrently present in the coronary arteries narrowing them, thus further increasing blood flow resistance, a further rise in blood pressure will occur. As blood pressure increases, so does the workload of the heart. As the workload of the heart increases, so does its need for oxygen and nutrients. Thus, as calcified arterial plaque takes hold and gradually continues to increase in the aorta and other arteries, there is a gradual spiralling cycle of increasing blood pressure at the expense of the functional reserve and overload capacity of the heart (eventually weakening the heart, which may be a precursor to congestive heart failure often seen in the elderly with a history of chronic hypertension). This is believed to be one of the basic causes of high blood pressure as aging occurs, and is why hypertension is considered part of cardiovascular disease.
Dairy products, foods fortified with calcium, calcium supplements, and antacids are the primary sources of excess total calcium and ionic calcium in the diet. The nutrient content of cow's milk is significantly different than human breast milk (cow's milk has 1250 mg of calcium per liter—as compared to human breast milk which has about 330 mg of calcium per liter). Cow's milk has high phosphate levels and is acidic, both of which can contribute to unbalanced calcium metabolism. There is an excessive amount of calcium and saturated fat in cow's milk. There is 10 times more calcium in cow's milk than there is magnesium. It is known that excess intracellular calcium interferes with several aspects of proper cellular function, such as the proper use of insulin's ability to deliver glucose into the cells (another way in which diabetes and atherosclerosis may be connected). The acidic nature of cow's milk (because of its animal protein content) if consumed in excess tends to draw balancing alkaline calcium from the bones, and in so doing weakens the bones.
Studies have shown that cheese is the only known dairy product that doesn't seem to contribute to unbalanced calcium metabolism, dystrophic calcification and calcified arterial plaque buildup in spite of its saturated animal fat content. A study of the cheese making process reveals why. During the cheese making process the whey portion, the thin watery part of milk that separates from the thicker part (curds) after coagulation, is routinely discarded. The calcium content of the discarded whey is predominately ionic calcium, supporting the discovery that it is excessive ionic calcium (in the absence of adequate balancing magnesium) that is the primary cause of unbalanced calcium metabolism that contributes to dystrophic calcification and calcified arterial plaque buildup. It was believed that the type of cheese may also have been a factor, with the softer cheeses contributing less to arterial plaque by virtue of them containing less saturated animal fat. It is now believed that in spite of the saturated animal fat content of cheese, the primary reason cheese does not seem to contribute to unbalanced calcium metabolism, dystrophic calcification and calcified arterial plaque buildup is because of its lessened ionic calcium content. The ionic calcium content of cheese appears to be a stronger influence in calcified arterial plaque buildup than the well-known saturated animal fat content, with this being supported by several epidemiological studies.
It is believed that heredity contributes no more than 6-10% of the predisposition to cardiovascular disease. It is widely believed that about 40-44% of cardiovascular disease is caused by the “risk factors” of improper diet, elevated blood cholesterol, lack of regular physical exercise, smoking, stress, diabetes, obesity, and hypertension. But the remaining approximately 50% of the cause of cardiovascular disease has remained elusive to conventional medical research until now. Unbalanced calcium metabolism (caused by excess ionic calcium in the face of insufficient availability of the balancing nutrients, such as compound complex magnesium and an improved compound complex form of calcium) can be thought of as that missing link. More than just a factor the way excess dietary animal fats, hydrogenated trans fats, and elevated triglycerides (elevated by excess dietary refined carbohydrates and sugar) are, unbalanced ionic calcium metabolism is now believed to be the primary cause of calcified arterial plaque buildup and atherosclerosis. Compound complex magnesium has been proven to reduce calcified arterial plaque buildup, while it is believed that an improved complex of calcium tends to balance ionic calcium while providing the body with a form of calcium it needs for normal calcium functions and cellular metabolism.
With the discovery that unbalanced ionic calcium metabolism is the main cause of calcified arterial plaque buildup, and having established a need for a form of calcium which is not ionic and can balance ionic calcium, a method for making an improved form of calcium has been discovered and is now disclosed.
More particularly, a method has been discovered for making an improved complex of calcium which is a compounded coordination complex of calcium. The term “compound complex calcium” is used herein to identify the calcium compound of the present invention. Compound complex calcium is a compounded coordination complex of calcium comprised of a coordination complex of calcium, protein amino acids, and ascorbic acid in a ratio of 1:1:2, i.e., one part calcium, one part protein amino acids, and two parts ascorbic acid, by weight. This composition of compound complex calcium results in a balanced potential of hydrogen producing essentially a neutral pH factor (i.e., 0.0000001 gram atom of hydrogen ion per liter of solution essentially the same pH of distilled water). When prepared in the indicated manner, the anionic protein amino acids component acts as a strong complexing agent capable of binding the cationic calcium component, effectively producing a ligand coordination complex. In addition, the second complexing with the ascorbic acid component reinforces the first complexing of the calcium component with the protein amino acids allowing it to reach its full potential, with an exponential increase in its potential for intestinal absorption, cellular utilization and effectiveness. This double complexing process can be thought of as a stepped double complexing, or a compounded coordination complex, or a compound ligand, or simply a compound complex. This compounded coordination complex effectively potentiates the calcium producing a composition which is essentially 100% available for intestinal absorption and cellular utilization resulting in maximum efficacy. Compound complex calcium is an improvement over any other form of orally administered or ingested calcium, and because it is not free unbound ionic calcium it does not contribute to unbalanced calcium metabolism, dystrophic calcification or calcified arterial plaque buildup. ========================================
Method of reducing calcified arterial plaque buildup and cellular malfunction and for balancing ionic calcium
freepatentsonline.com |