SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Politics : A US National Health Care System? -- Ignore unavailable to you. Want to Upgrade?


To: TimF who wrote (8195)8/12/2009 2:02:36 PM
From: TimF  Respond to of 42652
 
Where Drugs Come From, and How. Once More, With A Roll of the Eyes
Email This Entry

Posted by Derek

I linked yesterday to a post by Megan McArdle about health care reform. And while I realize that everyone got into a shouting match in the comments to my own post on the subject - and people sure did in the comments to hers; it's endemic - I wanted to quote a section from her on drug discovery:

Advocates of this policy have a number of rejoinders to this, notably that NIH funding is responsible for a lot of innovation. This is true, but theoretical innovation is not the same thing as product innovation. We tend to think of innovation as a matter of a mad scientist somewhere making a Brilliant Discovery!!! but in fact, innovation is more often a matter of small steps towards perfection. Wal-Mart’s revolution in supply chain management has been one of the most powerful factors influencing American productivity in recent decades. Yes, it was enabled by the computer revolution–but computers, by themselves, did not give Wal-Mart the idea of treating trucks like mobile warehouses, much less the expertise to do it.

In the case of pharma, what an NIH or academic researcher does is very, very different from what a pharma researcher does. They are no more interchangeable than theoretical physicists and civil engineers. An academic identifies targets. A pharma researcher finds out whether those targets can be activated with a molecule. Then he finds out whether that molecule can be made to reach the target. Is it small enough to be orally dosed? (Unless the disease you’re after is fairly fatal, inability to orally dose is pretty much a drug-killer). Can it be made reliably? Can it be made cost-effectively? Can you scale production? It’s not a viable drug if it takes one guy three weeks with a bunsen burner to knock out 3 doses.


I don't think a lot of readers here will have a problem with that description, because it seems pretty accurate. True, we do a lot more inhibiting drug targets than we do activating them, because it's easier to toss a spanner in the works, but that's mostly just a matter of definitions. And this does pass by the people doing some drug discovery work in academia (and the people doing more blue-sky stuff in industry), but overall, it's basically how things are, plus or minus a good ol' Bunsen burner or two.

But not everyone's buying it. Take this response by Ben Domenech over at The New Ledger. We'd better hope that this isn't a representative view, and that the people who are trying to overhaul all of health care as quickly as possible have a better handle on how our end of the system works:

. . .But needless to say, this passage and the ones following it surprised me a great deal. Working at the Department of Health and Human Services provided me the opportunity to learn a good deal about the workings of the NIH, and I happen to have multiple friends who still work there — and their shocked reaction to McArdle’s description was stronger than mine, to say the least.

“McArdle clearly doesn’t understand what she’s writing about,” one former NIH colleague said today. “Where does she think Nobel prize winners in biomedical research originate, academic researchers or in Pharma? Our academic researchers run clinical trials and develop drugs. I’m not trying to talk down Pharma, which I’m a big fan of, but I don’t think anyone in the field could read what she wrote without laughing.”

Well, I certainly could make it through without a chuckle, and I'll have been doing drug discovery for twenty years this fall. So how does the guy from HHS think things go over here?

To understand how research is divided overall, consider it as three tranches: basic, translational, and clinical. Basic is research at the molecular level to understand how things work; translational research takes basic findings and tries to find applications for those findings in a clinical setting; and clinical research takes the translational findings and produces procedures, drugs, and equipment for use by and on patients. . .

. . .The truth, as anyone knowledgeable within the system will tell you, is that private companies just don’t do basic research. They do productization research, and only for well-known medical conditions that have a lot of commercial value to solve. The government funds nearly everything else, whether it’s done by government scientists or by academic scientists whose work is funded overwhelmingly by government grants.


Hmm. Well-known with a lot of commercial value. Now it's true that we tend to go after things with commercial value - it is a business, after all - but how well-known is Gaucher disease? Or Fabry disease? Mucopolysaccharidosis I? People who actually know something about the drug industry will be nodding their heads, though, because they'll have caught on that I'm listing off Genzyme's product portfolio (part of it, anyway), which is largely made up of treatments for such things. There ar many other examples. Believe me, if we can make money going after a disease, we'll give it a try, and there are a lot of diseases. (The biggest breakdown occurs not when a disease affects a smaller number of people, but when almost no one who has it can possibly pay for the cost of developing the treatment, as in many tropical diseases).

But even taking Domenech's three research divisions as given - and they're not bad - don't we in industry even get to do a little bit of translational research? Even sometimes some basic stuff? After all, in the great majority times when we start attacking some new target, there is no drug for it, you know. We have to express the protein in an active form, work up a reliable assay using it, screen our compound collections looking for a lead structure, then work on it for a few years to make new compounds that are potent, selective, nontoxic, practical to produce, and capable of being dosed in humans. (Oh, and they really should be chemical structures that no one's ever made or even speculated about before). All of that is "productization" research? Even when we're the first people to actually take a given target idea into the clinic at all?

That happens all the time, you know. The first project I ever worked on in this industry was a selective dopamine antagonist targeted for schizophrenia. We were the first company to take this particular subtype into the clinic, and boy, did we bomb big. No activity at all. It was almost as if we'd discovered something basic about schizophrenia, but apparently that can't be the case. Then I worked on Alzheimer's therapies, namely protease inhibitors targeting beta-amyloid production, and if I'm not mistaken, the only real human data on such things has come from industry. I could go on, and I will, given half a chance. But I hope that the point has been made. If it hasn't, then consider this quote, from here:

“. . .translational research requires skills and a culture that universities typically lack, says Victoria Hale, chief executive of the non-profit drug company the Institute for OneWorld Health in San Francisco, California, which is developing drugs for visceral leishmaniasis, malaria and Chagas' disease. Academic institutions are often naive about what it takes to develop a drug, she says, and much basic research is therefore unusable. That's because few universities are willing to support the medicinal chemistry research needed to verify from the outset that a compound will not be a dead end in terms of drug development."

The persistent confusion over what's done in industry and what's done in academia has been one of my biggest lessons from running this blog. The topic just will not die. A few years ago, I ended up writing a long post on what exactly drug companies do in response to the "NIH discovers all the drugs" crowd, with several follow-ups (here, here, and here). But overall, Hercules had an easier time with the Hydra.

Now, there is drug discovery in academia (ask Dennis Liotta!), although not enough of it to run an industry. Lyrica is an example of a compound that came right out of the university labs, although it certainly had an interesting road to the market. And the topic of academic drug research has come up around here many times over the last few years. So I don't want to act as if there's no contribution at all past basic research in academia, because that's not true at all. But neither is it the case that pharma just swoops in, picks up the wonder drugs, and decides what color the package should be.

But what really burns my toast is this part:

So Pharma is interested in making money as their primary goal — that should surprise no one. But they’re also interested in avoiding litigation. Suppose for a moment that Pharma produces a drug to treat one non-life threatening condition, and it’s a monetary success, earning profits measured in billions of dollars. But then one of their researchers discovers it might have other applications, including life-saving ones. Instead of starting on research, Pharma will stand pat. Why? Because it doesn’t make any business sense to go through an entire FDA approval process and a round of clinical trials all over again, and at the end of the day, they could just be needlessly jeopardizing the success of a multi-billion dollar drug. It makes business sense to just stand with what works perfectly fine for the larger population, not try to cure a more focused and more deadly condition.

Ummm. . .isn't this exactly what happened with Vioxx? Merck was trying to see if Cox-2 inhibitors could be useful for colon cancer, which is certainly deadly, and certainly a lot less common than joint and muscle pains. Why didn't Merck "stand pat"? Because they wanted to make even more money of course. They'd already spent some of the cash that would have to have been spent on developing Vioxx, and cancer trials aren't as long and costly as they are in some other therapeutic areas. So it was actually a reasonable thing to look into. If you're staying in the same dosing range, you're not likely to turn up tox problems that you didn't already see in your earlier trials. (That's where Merck got into real trouble, actually - the accusation was that they'd seen signs of Vioxx's cardiovascular problems before the colon cancer trial, but breezed past them). But you just might come up with a benefit that allows you to sell your drug to a whole new market.

And that might also explain why, in general, drug companies look for new therapeutic opportunities like this all the time with their existing drugs. In fact, sometimes we look for them so aggressively that we get nailed for off-label promotion. No, instead of standing pat, we get in trouble for just the opposite. Your patented drug is a wasting asset, remember, and your job is to make the absolute most of it while it's still yours. Closing your eyes to new opportunities is not the way to do that.

The thing is, Domenech's heart seems to be mostly in the right place. He just doesn't understand the drug industry, and neither do his NIH sources. Talking to someone who works in it would have helped a bit.

pipeline.corante.com