SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Politics : Rat's Nest - Chronicles of Collapse -- Ignore unavailable to you. Want to Upgrade?


To: Mannie who wrote (9446)8/24/2009 10:28:21 AM
From: Wharf Rat  Read Replies (4) | Respond to of 24213
 
The future of airplanes: electricity
Posted by Jeffrey M. O'Brien
August 24, 2009 6:59 AM

Electrical aeronautics promises to revolutionize aircraft design.
GM (MTLQQ) has earned high praise this summer – and deservedly so – for its announcement that the forthcoming Chevy Volt electric car will get as much as much as 230 miles per gallon for in-town driving.
But while Detroit was stealing headlines on the ground, a little-known Chinese company was doing something even more incredible in the skies.

At the OshKosh AirVenture show a few weeks ago, Beijing startup Yuneec International took the wraps off the world’s first commercially produced electric aircraft, the E430.

Powered by lithium polymer batteries, weighing close to a thousand pounds, and sipping about $2.50 worth of electricity per hour of flight, the E430 has completed more than 20 hours in test runs during the last couple months, including one in Camarillo, CA, that can be seen here.

Little more has been revealed about the E430, other than some technical specifications and that it can operate for up to three hours without a charge.

Today: adding electricity-powered systems

And while the E430 may be the aircraft equivalent of an auto show concept-car, there’s a good deal of progress being made in the advancement of electrical aeronautics on the whole. “What’s going on with modern aircraft is a revolution, whether you’re thinking about commercial or military aircraft,” says Bob Smith, VP of advanced technology at Honeywell Aerospace, a unit of Honeywell (HON).

Smith doesn't mean fully electric-powered aircraft – at least not yet. In aeronautic jargon, he’s talking about developing More Electric Architecture (MEA). Enabled by much larger and more sophisticated next-gen aircraft and more efficient generators, Honeywell is replacing the pneumatic and hydraulic power transference systems of with new electric versions.

“If you look at how much power a Boeing 777 generates, it’s on the order of 200-300 kilowatts. If you look at the 787, a next-gen aircraft, it’s 1.5 megawats,” he says. “That’s a massive change, because the generator technology has improved so much.”

Moving power around aircraft has always been cumbersome. In last-gen aircraft, high-pressure gas is taken from the engine and transported through bleed valves to the auxiliary power system, which controls air-conditioning, for example. This is a massively inefficient process due to the energy required to heat and cool the gases and because of the weight of the systems. “If you can put a more efficient generator in there, you have a power station as opposed to a boiling room,” says Smith.

Electrical systems are now being used to power reverse-thrusters – air brakes, essentially - in aircraft like the A380 – and for de-icing wings.

The upside: gains in fuel efficiencies

But two of the greatest benefits electrical systems provide are simplicity and merely lightening the load. Eliminating hydraulic systems reduces the complexity of repairing leaks and eliminating hundreds of pounds of tubing.

This can lead to as much as 30% gains in fuel consumption. For military aircraft, such a system is revolutionary. In the F35 Joint Strike Fighter, Honeywell’s system carved 1,000 pounds off the weight and 11 inches off the length of the plane.

Does Honeywell have its own E430 read for prime time? Not quite, but Smith suggests the real near-term potential for fully electric aircaft comes in the form of unmanned drones. Think about light-weight drones that travel constantly, their electric systems being continually replenished by advanced technologies like super capacitors, fuel cell systems and solar power.

“Once you have large power-generating systems, you have the capability of moving the power around a lot of different ways,” says Smith. “Then things get pretty interesting, allowing you to get into very long surveillance periods.”

brainstormtech.blogs.fortune.cnn.com



To: Mannie who wrote (9446)9/17/2009 12:32:36 AM
From: Wharf Rat  Read Replies (1) | Respond to of 24213
 
Thanks

The Island in the Wind
A Danish community’s victory over carbon emissions.
by Elizabeth Kolbert
July 7, 2008 Text Size:
Once people on Samsø started thinking about energy, a local farmer explains, “it became a kind of sport.”
Jørgen Tranberg is a farmer who lives on the Danish island of Samsø. He is a beefy man with a mop of brown hair and an unpredictable sense of humor. When I arrived at his house, one gray morning this spring, he was sitting in his kitchen, smoking a cigarette and watching grainy images on a black-and-white TV. The images turned out to be closed-circuit shots from his barn. One of his cows, he told me, was about to give birth, and he was keeping an eye on her. We talked for a few minutes, and then, laughing, he asked me if I wanted to climb his wind turbine. I was pretty sure I didn’t, but I said yes anyway.

We got into Tranberg’s car and bounced along a rutted dirt road. The turbine loomed up in front of us. When we reached it, Tranberg stubbed out his cigarette and opened a small door in the base of the tower. Inside were eight ladders, each about twenty feet tall, attached one above the other. We started up, and were soon huffing. Above the last ladder, there was a trapdoor, which led to a sort of engine room. We scrambled into it, at which point we were standing on top of the generator. Tranberg pressed a button, and the roof slid open to reveal the gray sky and a patchwork of green and brown fields stretching toward the sea. He pressed another button. The rotors, which he had switched off during our climb, started to turn, at first sluggishly and then much more rapidly. It felt as if we were about to take off. I’d like to say the feeling was exhilarating; in fact, I found it sickening. Tranberg looked at me and started to laugh.

Samsø, which is roughly the size of Nantucket, sits in what’s known as the Kattegat, an arm of the North Sea. The island is bulgy in the south and narrows to a bladelike point in the north, so that on a map it looks a bit like a woman’s torso and a bit like a meat cleaver. It has twenty-two villages that hug the narrow streets; out back are fields where farmers grow potatoes and wheat and strawberries. Thanks to Denmark’s peculiar geography, Samsø is smack in the center of the country and, at the same time, in the middle of nowhere.

For the past decade or so, Samsø has been the site of an unlikely social movement. When it began, in the late nineteen-nineties, the island’s forty-three hundred inhabitants had what might be described as a conventional attitude toward energy: as long as it continued to arrive, they weren’t much interested in it. Most Samsingers heated their houses with oil, which was brought in on tankers. They used electricity imported from the mainland via cable, much of which was generated by burning coal. As a result, each Samsinger put into the atmosphere, on average, nearly eleven tons of carbon dioxide annually.

from the issuecartoon banke-mail thisThen, quite deliberately, the residents of the island set about changing this. They formed energy coöperatives and organized seminars on wind power. They removed their furnaces and replaced them with heat pumps. By 2001, fossil-fuel use on Samsø had been cut in half. By 2003, instead of importing electricity, the island was exporting it, and by 2005 it was producing from renewable sources more energy than it was using.

The residents of Samsø that I spoke to were clearly proud of their accomplishment. All the same, they insisted on their ordinariness. They were, they noted, not wealthy, nor were they especially well educated or idealistic. They weren’t even terribly adventuresome. “We are a conservative farming community” is how one Samsinger put it. “We are only normal people,” Tranberg told me. “We are not some special people.”

This year, the world is expected to burn through some thirty-one billion barrels of oil, six billion tons of coal, and a hundred trillion cubic feet of natural gas. The combustion of these fossil fuels will produce, in aggregate, some four hundred quadrillion B.T.U.s of energy. It will also yield around thirty billion tons of carbon dioxide. Next year, global consumption of fossil fuels is expected to grow by about two per cent, meaning that emissions will rise by more than half a billion tons, and the following year consumption is expected to grow by yet another two per cent.

When carbon dioxide is released into the air, about a third ends up, in relatively short order, in the oceans. (CO2 dissolves in water to form a weak acid; this is the cause of the phenomenon known as “ocean acidification.”) A quarter is absorbed by terrestrial ecosystems—no one is quite sure exactly how or where—and the rest remains in the atmosphere. If current trends in emissions continue, then sometime within the next four or five decades the chemistry of the oceans will have been altered to such a degree that many marine organisms—including reef-building corals—will be pushed toward extinction. Meanwhile, atmospheric CO2 levels are projected to reach five hundred and fifty parts per million—twice pre-industrial levels—virtually guaranteeing an eventual global temperature increase of three or more degrees. The consequences of this warming are difficult to predict in detail, but even broad, conservative estimates are terrifying: at least fifteen and possibly as many as thirty per cent of the planet’s plant and animal species will be threatened; sea levels will rise by several feet; yields of crops like wheat and corn will decline significantly in a number of areas where they are now grown as staples; regions that depend on glacial runoff or seasonal snowmelt—currently home to more than a billion people—will face severe water shortages; and what now counts as a hundred-year drought will occur in some parts of the world as frequently as once a decade.

PHOTOGRAPH: VII“The Island in the Wind” continues
Page of 8 Next > Last >|
newyorker.com