SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Biotech / Medical : Biotech Valuation -- Ignore unavailable to you. Want to Upgrade?


To: Biomaven who wrote (32962)11/22/2009 9:22:31 PM
From: Biomaven1 Recommendation  Respond to of 52153
 
BTW, Novartis has an oral iron chelation drug (Exjade) - don't think it crosses the blood brain barrier though, so unlikely to be of any utility here.

This preclinical abstract in ALS is interesting though - these compounds seem to hit a good set of targets:

FASEB J. 2009 Nov;23(11):3766-79. Epub 2009 Jul 28.
Neuroprotective and neuritogenic activities of novel multimodal iron-chelating drugs in motor-neuron-like NSC-34 cells and transgenic mouse model of amyotrophic lateral sclerosis.

Kupershmidt L, Weinreb O, Amit T, Mandel S, Carri MT, Youdim MB.

Eve Topf and USA National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research, Haifa, Israel

Novel therapeutic approaches for the treatment of neurodegenerative disorders comprise drug candidates designed specifically to act on multiple central nervous system targets. We have recently synthesized multifunctional, nontoxic, brain-permeable iron-chelating drugs, M30 and HLA20, possessing the N-propargylamine neuroprotective moiety of rasagiline (Azilect) and the iron-chelating moiety of VK28. The present study demonstrates that M30 and HLA20 possess a wide range of pharmacological activities in mouse NSC-34 motor neuron cells, including neuroprotective effects against hydrogen peroxide- and 3-morpholinosydnonimine-induced neurotoxicity, induction of differentiation, and up-regulation of hypoxia-inducible factor (HIF)-1alpha and HIF-target genes (enolase1 and vascular endothelial growth factor). Both compounds induced NSC-34 neuritogenesis, accompanied by a marked increase in the expression of brain-derived neurotrophic factor and growth-associated protein-43, which was inhibited by PD98059 and GF109203X, indicating the involvement of mitogen-activated protein kinase and protein kinase C pathways. A major finding was the ability of M30 to significantly extend the survival of G93A-SOD1 amyotrophic lateral sclerosis mice and delay the onset of the disease. These properties of the novel multimodal iron-chelating drugs possessing neuroprotective/neuritogenic activities may offer future therapeutic possibilities for motor neurodegenerative diseases.