SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Technology Stocks : Applied Materials No-Politics Thread (AMAT) -- Ignore unavailable to you. Want to Upgrade?


To: etchmeister who wrote (24835)1/11/2011 12:22:02 AM
From: etchmeister  Respond to of 25522
 
(I suppose everybody picked up on this one)
Don't be so sure - looking at Don's board "fundamental" analysis beside quoting analyst blurbs is very weak



To: etchmeister who wrote (24835)1/11/2011 11:49:59 PM
From: etchmeister  Respond to of 25522
 
This article is from
Solid State Technology

Share

Enabling lithography for the 22nm node

Technology forecasts for 22nm
Addressing defectivity will require new surface-engineering processes at 22nm
RoHS, device shrinks will continue to drive packaging technology
Tooling and process technology vital for thin packages
More collaboration is needed to improve process integration
22nm brings maskmakers, end users closer
22nm: The era of wafer bonding
Failure analysis challenges at 22nm drive the need for turn-key failure analysis solutions
A materials evolution and revolution for 22nm devices
Enabling lithography for the 22nm node
Keys to CMP and cleans: Defect reduction and process customization
Gate structure/3D stacking "winners" will determine industry direction

This is an online exclusive essay in SST's Forecast for 2011: Back to Reality series.

Nick Pugliano, Marketing Director, Advanced Pattering Technologies, Dow Electronic Materials, Marlborough, MA, USA

Nick Pugliano, Marketing Director, Advanced Pattering Technologies, Dow Electronic Materials, Marlborough, MA, USAJanuary 11, 2011 -- Though single-exposure patterning schemes are unable to meet 22nm specifications, advanced patterning technologies using ArF immersion allow us to continue shrinking critical dimensions in semiconductor devices. However, the use of ArF immersion at 22nm requires multi-step patterning processes and elaborate pitch-doubling schemes such as litho-etch-litho-etch (LELE) and self-aligned double-patterning (SADP) technologies. Although these technologies are more costly than any single-exposure process, they persist as a standard patterning solution for today’s 22nm device architectures in the absence of viable alternatives.

Yet the 22nm node also represents an inflection point, because additional shrink strategies will require further multiplication of these technologies. For example, quadruple-patterning is needed to extend these techniques beyond 22nm, but a simple multiplication of double-patterning would be costly and extremely difficult to deploy in mass production. The semiconductor industry is keenly aware that a single-exposure solution such as EUV will not be ready for 22nm due to its own set of challenges. Thus, the 22nm node has emerged as a proving ground for various innovative patterning processes geared toward on-track, low cost of ownership technologies.

Many approaches for printing critical contacts are currently under development and expect to see wide adoption at the 22nm node and beyond. Some approaches use shrink processes in new ways, but are not promising when printing the highest density patterns. Others explore tone reversal technologies that capitalize on improvements in aerial image contrast for certain feature types when using a negative, rather than positive, tone mask. Resist freezing via a track-applied, surface-curing solution or a high-temperature thermal curing step continues to be developed with the hope of reducing the number of vacuum-based CVD or etch steps, but these technologies still suffer from pattern fidelity issues and are not yet ready to displace SADP or LELE schemes.

For all immersion patterning processes, top coat use has been mainstream; however, top-coat-free technologies have been proven in foundry and memory applications. These technologies use self stratifying, surface active ingredients that control the properties of a photoresist to enable high scan speed immersion patterning, while simultaneously serving as an immersion barrier layer. On-track technologies utilizing spin-on silicon hard masks will extend as a way of lowering back-end processing costs. Finally, the use of spin-on anti-reflection coatings with precisely tuned optical properties will be important for the most critical layers, as these are needed to work in tandem with the underlying device stack to suppress back-reflected radiation from the large range of off-axis light that is present in high-NA imaging systems.

These approaches highlight the critical role that track applied materials have in enabling next-generation approaches to cost-effective patterning -- a trend that is expected to continue as the semiconductor industry attempts to follow its shrink trajectory toward 22nm and beyond.