SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Politics : Formerly About Advanced Micro Devices -- Ignore unavailable to you. Want to Upgrade?


To: Brumar89 who wrote (828592)1/8/2015 2:16:07 PM
From: Wharf Rat  Read Replies (1) | Respond to of 1574089
 
Better alert Goddard; NASA is manipulating the calendar.

Recent warming by latitude associated with increased length of ragweed pollen season in central North America
Lewis Ziska a, et al

Abstract

A fundamental aspect of climate change is the potential shifts in flowering phenology and pollen initiation associated with milder winters and warmer seasonal air temperature. Earlier floral anthesis has been suggested, in turn, to have a role in human disease by increasing time of exposure to pollen that causes allergic rhinitis and related asthma. However, earlier floral initiation does not necessarily alter the temporal duration of the pollen season, and, to date, no consistent continental trend in pollen season length has been demonstrated. Here we report that duration of the ragweed (Ambrosia spp.) pollen season has been increasing in recent decades as a function of latitude in North America. Latitudinal effects on increasing season length were associated primarily with a delay in first frost of the fall season and lengthening of the frost free period. Overall, these data indicate a significant increase in the length of the ragweed pollen season by as much as 13–27 d at latitudes above ~44°N since 1995. This is consistent with recent Intergovernmental Panel on Climate Change projections regarding enhanced warming as a function of latitude. If similar warming trends accompany long-term climate change, greater exposure times to seasonal allergens may occur with subsequent effects on public health.

pnas.org