To: Wharf Rat who wrote (919243 ) 2/4/2016 8:26:13 PM From: Brumar89 Read Replies (1) | Respond to of 1572507 Those would be based on algorithm adjusted data, right? I read a bit on a couple of those Braganza studies and they seem not to be what was indicated.Some simple indices are used to describe global climate variability in observational data and climate model simulations. The indices are surface temperature based and include the global-mean, the land–ocean contrast, the meridional gradient, the interhemispheric contrast, and the magnitude of the annual cycle. These indices contain information independent of the variations of the global-mean temperature for unforced climate variations. They also represent the main features of the modelled surface temperature response to increasing greenhouse gases in the atmosphere. Hence, they should have a coherent response for greenhouse climate change. On interannual and decadal time scales, the variability and correlation structure of the indices from long control climate model simulations compare well with those from detrended instrumental observations for the twentieth century and proxy based climate reconstructions for 1700–1900. The indices provide a simple but effective way to evaluate global-scale climate variability in control climate model simulations. On decadal time scales, the observed correlation structure between the indices during the twentieth century shows significant differences from the detrended observations and control model simulations. These changes are consistent with forced climate variations in greenhouse climate change simulations. This suggests that the changes in the correlation structure between these indices can be used as an indicator of climate change. Five simple indices of surface temperature are used to investigate the influence of anthropogenic and natural (solar irradiance and volcanic aerosol) forcing on observed climate change during the twentieth century. These indices are based on spatial fingerprints of climate change and include the global-mean surface temperature, the land-ocean temperature contrast, the magnitude of the annual cycle in surface temperature over land, the Northern Hemisphere meridional temperature gradient and the hemispheric temperature contrast. The indices contain information independent of variations in global-mean temperature for unforced climate variations and hence, considered collectively, they are more useful in an attribution study than global mean surface temperature alone. Observed linear trends over 1950–1999 in all the indices except the hemispheric temperature contrast are significantly larger than simulated changes due to internal variability or natural (solar and volcanic aerosol) forcings and are consistent with simulated changes due to anthropogenic (greenhouse gas and sulfate aerosol) forcing. The combined, relative influence of these different forcings on observed trends during the twentieth century is investigated using linear regression of the observed and simulated responses of the indices. It is found that anthropogenic forcing accounts for almost all of the observed changes in surface temperature during 1946–1995. We found that early twentieth century changes (1896–1945) in global mean temperature can be explained by a combination of anthropogenic and natural forcing, as well as internal climate variability. Estimates of ‘scaling factors’ that weight the amplitude of model simulated signals to corresponding observed changes using a combined normalized index are similar to those calculated using more complex, optimal fingerprint techniques.