Modern Debacle Of Wasted Trillions. Consensus: Efforts To Prevent Climate Change “Will Almost Surely Fail”!By P Gosselin on 2. June 2016
Scientific Consensus: “Efforts to curtail world temps will almost surely fail”By Kenneth Richard
Already this year there are 6 peer-reviewed papers examining efforts to curtail CO2 emissions through the use renewable energies. They all conclude that the effort won’t be successful. Given the trillions already committed and at risk of being totally wasted, one has to seriously question the wisdom of the effort.
In fact, some think the renewable energy effort could make things even worse.
What follows are 6 scientific publications from this year alone that tell us the climate protection efforts are not working.
1. Jones and Warner, 2016
“Here we quantify the changes in the global energy mix necessary to address population and climate change under two energy-use scenarios, finding that renewable energy production (9% in 2014) must comprise 87–94% of global energy consumption by 2100. Our study suggests >50% renewable energy needs to occur by 2028 in a <2 °C warming scenario”
Press release here.
“Efforts to curtail world temps will almost surely fail”
The Texas A&M researchers modelled the projected growth in global population and per capita energy consumption, as well as the size of known reserves of oil, coal and natural gas, and greenhouse gas emissions to determine just how difficult it will be to achieve the less-than-2 degree Celsius warming goal. “It would require rates of change in our energy infrastructure and energy mix that have never happened in world history and that are extremely unlikely to be achieved,” explains Jones. “Just considering wind power, we found that it would take an annual installation of 485,000 5-megawatt wind turbines by 2028. The equivalent of about 13,000 were installed in 2015. That’s a 37-fold increase in the annual installation rate in only 13 years to achieve just the wind power goal,” adds Jones. Similar expansion rates are needed for other renewable energy sources. “To even come close to achieving the goals of the Paris Agreement, 50 percent of our energy will need to come from renewable sources by 2028, and today it is only 9 percent, including hydropower. For a world that wants to fight climate change, the numbers just don’t add up to do it.”
2. Lomborg, 2016
“All climate policies by the US, China, the EU and the rest of the world, implemented from the early 2000s to 2030 and sustained through the century will likely reduce global temperature rise about 0.17°C in 2100. These impact estimates are robust to different calibrations of climate sensitivity, carbon cycling and different climate scenarios. Current climate policy promises will do little to stabilize the climate and their impact will be undetectable for many decades.”
3. Moriarty and Honnery, 2016
Highlights: “We argue it is unlikely that RE [renewable energy] can meet existing global energy use.
Fossil fuels face resource depletion, supply security, and climate change problems; renewable energy (RE) may offer the best prospects for their long-term replacement. However, RE sources differ in many important ways from fossil fuels, particularly in that they are energy flows rather than stocks. The most important RE sources, wind and solar energy, are also intermittent, necessitating major energy storage as these sources increase their share of total energy supply. We show that estimates for the technical potential of RE vary by two orders of magnitude, and argue that values at the lower end of the range must be seriously considered, both because their energy return on energy invested falls, and environmental costs rise, with cumulative output. Finally, most future RE output will be electric, necessitating radical reconfiguration of existing grids to function with intermittent RE.”
4. Ferroni and Hopkirk, 2016
Abstract: “Many people believe renewable energy sources to be capable of substituting fossil or nuclear energy. However there exist very few scientifically sound studies, which apply due diligence to substantiating this impression. In the present paper, the case of photovoltaic power sources in regions of moderate insolation is analysed critically by using the concept of Energy Return on Energy Invested (ERoEI, also called EROI). But the methodology for calculating the ERoEI differs greatly from author-to-author. The main differences between solar PV Systems are between the current ERoEI and what is called the extended ERoEI (ERoEI EXT). The current methodology recommended by the International Energy Agency is not strictly applicable for comparing photovoltaic (PV) power generation with other systems. The main reasons are due to the fact that on one hand, solar electricity is very material-intensive, labour-intensive and capital-intensive and on the other hand the solar radiation exhibits a rather low power density.”
Conclusion: “[A]n electrical supply system based on today’s PV technologies cannot be termed an energy source, but rather a non-sustainable energy sink. … [I]t has become clear that photovoltaic energy at least will not help in any way to replace the fossil fuel.”
5. Bannaga, 2016
“It is evident that UN efforts to combat climate change are not effective because past experience shows that CO2 generation cuts weren’t near enough. The recent Paris Agreement may restore a faith in UN process if implemented but doesn’t reduce temperatures as needed unless all drivers of climate variability are considered, particularly the abortive role of developing cities. The UN Programme appears to be focusing on attaining urban resilience rather than targeting grassroots causes. Urbane-bias global policies drive the rural population to leave their land and flood cities while over-usage of natural resources by the rich is left unchecked.”
6. Kelly, 2016
“The growth of the ecological footprint of a human population about to increase from 7B now to 9B in 2050 raises serious concerns about how to live both more efficiently and with less permanent impacts on the finite world. One present focus is the future of our climate, where the level of concern has prompted actions across the world in mitigation of the emissions of CO2. An examination of successful and failed introductions of technology over the last 200 years generates several lessons that should be kept in mind as we proceed to 80% decarbonize the world economy by 2050. I will argue that all the actions taken together until now to reduce our emissions of carbon dioxide will not achieve a serious reduction, and in some cases, they will actually make matters worse. In practice, the scaleand the different specific engineering challenges of the decarbonization project are without precedent in human history. This means that any new technology introductions need to be able to meet the huge implied capabilities. An altogether more sophisticated public debate is urgently needed on appropriate actions that (i) considers the full range of threats to humanity, and (ii) weighs more carefully both the upsides and downsides of taking any action, and of not taking that action.”
- See more at: http://notrickszone.com/#sthash.2epVdTPE.dpuf |