SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Politics : Politics of Energy -- Ignore unavailable to you. Want to Upgrade?


To: Brumar89 who wrote (75697)3/25/2017 1:52:19 PM
From: Brumar89  Respond to of 86356
 
The Anthropocene Creed


As found on various online sources.



To: Brumar89 who wrote (75697)3/25/2017 4:09:04 PM
From: Maurice Winn  Read Replies (1) | Respond to of 86356
 
So, the question I put to you is this: After reviewing the information above, and perhaps doing your own research, what would be the ideal concentration of CO2?

537 parts per million. Then plant crops will be able to produce enough cellulose for combustion to fuel the power stations needed to supply 300 million uberized electric autocars. 300 million x $10,000 = $3 trillion = a very big economic opportunity for making them. The 7SSS* business will be big too. As will the electricity supply business. But photovoltaics might do better than cellulose - as is the case so far with photovoltaic prices still dropping.

We probably won't get to 537 parts per million before Peak People makes it an impossible target. In a third of a century, we've manage to increase CO2 from 340 ppm to 400 ppm . Another third of a century should get us to about 480 ppm. But the big human die off will begin in 20 years. With continued technological improvement such as in photovoltaics and autonomous uberized electric cars and drone deliveries, buying of petrol and diesel will head towards zero. With good 3D and stereophonic sound, the desire to travel might be greatly reduced too. Why crowd around tourist cities when 3D fibre can take you there, apart from air temperature, smell and being knifed or run over by a jihadist?

When there are only 2 billion people, using a lot less fossil fuel per person, they might find that the absorbing and disposal of CO2 by the ecosphere exceeds the output capacity of people.

Peak CO2 should be, umm, let's see. Hmmm. Actually, it will probably be 537 ppm. That will occur in 2057. The current projections of Peak People [demographers don't predict a peak, just continued growth for this century] are wishful thinking. Nature is cruel, merciless, relentless with vagary thrown in for luck. A tsunami from a bolide, or nuclear war, or an H5N1 humanized flu or similar, or trade wars, blockades and economic disruption, or horrific civil wars such as Rwanda's, or regular large scale land wars, or reglaciation starting in 2020, could introduce Peak People to a place near you any time from now.

Mqurice

* seven second swap stop to enable nearly instant car recharging.



To: Brumar89 who wrote (75697)3/25/2017 10:01:56 PM
From: Maurice Winn  Read Replies (1) | Respond to of 86356
 
So, the question I put to you is this: After reviewing the information above, and perhaps doing your own research, what would be the ideal concentration of CO2?

537 parts per million. But maybe 1000 ppm would be better still. With that much CO2, athletes would not be able to beat records set when there was less CO2. Suffocation is not so good for aerobic exercize extremes. Actually, that might not make all that much difference because CO2 in exhaled air is about 5% so going from 0.04% CO2 inhaled to 0.05% inhaled is trivial compared with 5% exhaled = 100 times as much CO2 going out as coming in.

Plants would go crazy!! Not up to the joys of the carboniferous times at 1600 parts per million but still quite fun for the chlorophyll crowd.

Mqurice




To: Brumar89 who wrote (75697)3/26/2017 2:48:44 PM
From: Brumar89  Read Replies (1) | Respond to of 86356
 
Fascinating New Studies Confirm Solar Activity Plays Important Role On Driving Climate

By P Gosselin on 25. March 2017

Once again what follows is more inconvenient evidence showing that the sun is the main driver, and not singled out trace gas CO2.
====================================

The sun drives climate: Spain and PortugalBy Dr. Sebastian Lüning and Prof. Fritz Vahrenholt
(German text translated/edited by P Gosselin)

Does the sun influence climate? In today’s post we would like to introduce new studies from Spain and Portugal that shed light on this. In February 2017 a tree-ring study appeared in Climate of the Past. It was authored by Ernesto Tejedor et al, who made a temperature reconstruction for the Iberian Peninsula for the past 400 years.

The authors emphasize that the temperature fluctuations fit very well with the fluctuations in solar activity.

Warm phases coincide with periods of high solar activity. In total the region of study warmed up almost 3°C over the past 400 years, which reflects the transition from the Little Ice Age to the modern warm period — see figure below. However there were phases around 1625 and 1800 when temperatures were at today’s levels for a short time.



Temperature curve in the mountain regions of northern Spain over the past 400 years, compared to solar activity. Source: Tejedor et al. 2017.

What follows is the study’s abstract:

Temperature variability in the Iberian Range since 1602 inferred from tree-ring records
Tree rings are an important proxy to understand the natural drivers of climate variability in the Mediterranean Basin and hence to improve future climate scenarios in a vulnerable region. Here, we compile 316 tree-ring width series from 11 conifer sites in the western Iberian Range. We apply a new standardization method based on the trunk basal area instead of the tree cambial age to develop a regional chronology which preserves high- to low-frequency variability. A new reconstruction for the 1602–2012 period correlates at -0.78 with observational September temperatures with a cumulative mean of the 21 previous months over the 1945–2012 calibration period. The new IR2Tmax reconstruction is spatially representative for the Iberian Peninsula and captures the full range of past Iberian Range temperature variability. Reconstructed long-term temperature variations match reasonably well with solar irradiance changes since warm and cold phases correspond with high and low solar activity, respectively. In addition, some annual temperature downturns coincide with volcanic eruptions with a 3-year lag.”

Next comes Portugal. Anna Morozova and Tatiana Barlyaeva analyzed the temperature curve of the past 100 years in Lisbon, Coimbra and Porto. Here they found a weak but statistically well supported signal of the 11-year and 22-year solar cycles on the temperature data. In the study’s main text we read:

Weak but statistically significant (bi-)decadal signals in the temperature series that can be associated with the solar and geomagnetic activity variations were found. These signals are stronger during the spring and autumn seasons. The multiple regression models which include the sunspot numbers or the geomagnetic indices among other regressors have higher prediction quality. The wavelet coherence analysis shows that there are time lags between the temperature variations and the solar activity cycles. These lags are about 1–2 years in case of the 11-yr solar cycle as well as in case of the 22-yr solar magnetic cycle (relatively to the solar polar magnetic field observations). These lags are confirmed by the correlation analysis. The results obtained by these methods as well as comparison to results of other studies allow us to conclude that the found (bi-)decadal temperature variability modes can be associated, at least partly, with the effect of the solar forcing.”

Continuing out into the Atlantic Ocean. The Azores islands play an important role in western European weather. In November 2016 Roy et al. in the Journal of Atmospheric and Solar-Terrestrial Physics looked at the question of whether solar activity could play a role on the well-known Azores highs.

A solar impact on this important weather machine would be of great meaning. And indeed the authors found a significant coupling between the Azores highs and solar activity. The relationship becomes visible foremost when one considers different solar activity characteristic figures, and not only the often used sunspot number. It is becoming increasingly clear that the solar magnetic field plays a just as important role — and brought the needed breakthrough in the case of the Azores.

Time delay effects of 1 to 2 years do have be accounted for. The climate system lags a bit and does not immediately react to every impulse that comes up. Sometimes it takes a little time before the system reacts and adjusts to external factors. What follows is the abstract of the exciting study:

Comparing the influence of sunspot activity and geomagnetic activity on winter surface climate
We compare here the effect of geomagnetic activity (using the aa index) and sunspot activity on surface climate using sea level pressure dataset from Hadley centre during northern winter. Previous studies using the multiple linear regression method have been limited to using sunspots as a solar activity predictor. Sunspots and total solar irradiance indicate a robust positive influence around the Aleutian Low. This is valid up to a lag of one year. However, geomagnetic activity yields a positive NAM pattern at high to polar latitudes and a positive signal around Azores High pressure region. Interestingly, while there is a positive signal around Azores High for a 2-year lag in sunspots, the strongest signal in this region is found for aa index at 1-year lag. There is also a weak but significant negative signature present around central Pacific for both sunspots and aa index. The combined influence of geomagnetic activity and Quasi Biannual Oscillation (QBO 30 hPa) produces a particularly strong response at mid to polar latitudes, much stronger than the combined influence of sunspots and QBO, which was mostly studied in previous studies so far. This signal is robust and insensitive to the selected time period during the last century. Our results provide a useful way for improving the prediction of winter weather at middle to high latitudes of the northern hemisphere.

- See more at: notrickszone.com