To: Wharf Rat who wrote (1008913 ) 3/30/2017 8:42:17 PM From: Wharf Rat Respond to of 1572437 Breaking the jet stream Influence of Anthropogenic Climate Change on Planetary Wave Resonance and Extreme Weather Events Abstract Persistent episodes of extreme weather in the Northern Hemisphere summer have been shown to be associated with the presence of high-amplitude quasi-stationary atmospheric Rossby waves within a particular wavelength range (zonal wavenumber 6–8). The underlying mechanistic relationship involves the phenomenon of quasi-resonant amplification (QRA) of synoptic-scale waves with that wavenumber range becoming trapped within an effective mid-latitude atmospheric waveguide. Recent work suggests an increase in recent decades in the occurrence of QRA-favorable conditions and associated extreme weather, possibly linked to amplified Arctic warming and thus a climate change influence. Here, we isolate a specific fingerprint in the zonal mean surface temperature profile that is associated with QRA-favorable conditions. State-of-the-art (“CMIP5”) historical climate model simulations subject to anthropogenic forcing display an increase in the projection of this fingerprint that is mirrored in multiple observational surface temperature datasets. Both the models and observations suggest this signal has only recently emerged from the background noise of natural variability. Introduction A series of persistent, extreme summer weather events in recent years including the 2003 European Heat Wave, the 2010 Pakistan flood/Russian heatwave, 2011 Texas drought and the unprecedented, ongoing drought in California, has led to a continuing discussion in the scientific literature regarding the relationship between anthropogenic climate change and the spate of recent weather extremes 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 .nature.com