FYI ... The Gasoline FAQ
cis.ohio-state.edu
Sample Contents relevant to MIDL and DF-144
4.5 What are oxygenates? Oxygenates are just preused hydrocarbons :-). They contain oxygen, which can not provide energy, but their structure provides a reasonable antiknock value, thus they are good substitutes for aromatics, and they may also reduce the smog-forming tendencies of the exhaust gases [15]. Most oxygenates used in gasolines are either alcohols ( Cx-O-H ) or ethers (Cx-O-Cy), and contain 1 to 6 carbons. Alcohols have been used in gasolines since the 1930s, and MTBE was first used in commercial gasolines in Italy in 1973, and was first used in the US by ARCO in 1979. The relative advantages of aromatics and oxygenates as environmentally-friendly and low toxicity octane-enhancers are still being researched
**** Diagram deleted, posted in next message ****
They can be produced from fossil fuels eg methanol (MeOH), methyl tertiary butyl ether (MTBE), tertiary amyl methyl ether (TAME), or from biomass, eg ethanol(EtOH), ethyl tertiary butyl ether (ETBE)). MTBE is produced by reacting methanol ( from natural gas ) with isobutylene in the liquid phase over an acidic ion-exchange resin catalyst at 100C. The isobutylene was initially from refinery catalytic crackers or petrochemical olefin plants, but these days larger plants produce it from butanes. MTBE production has increased at the rate of 10 to 20% per year, and the spot market price in June 1993 was around $270/tonne [15]. The "ether" starting fluids for vehicles are usually diethyl ether (liquid) or dimethyl ether (aerosol). Note that " petroleum ethers " are volatile alkane hydrocarbon fractions, they are not a Cx-O-Cy compound. Oxygenates are added to gasolines to reduce the reactivity of emissions, but they are only effective if the hydrocarbon fractions are carefully modified to utilise the octane and volatility properties of the oxygenates. If the hydrocarbon fraction is not correctly modified, oxygenates can increase the undesirable smog-forming and toxic emissions. Oxygenates do not necessarily reduce all exhaust toxins, nor are they intended to. Oxygenates have significantly different physical properties to hydrocarbons, and the levels that can be added to gasolines are controlled by the 1977 Clean Air Act amendments in the US, with the laws prohibiting the increase or introduction of a fuel or fuel additive that is not substantially similar to any fuel or fuel additive used to certify 1975 or subsequent years vehicles. Waivers can granted if the product does not cause or contribute to emission device failures, and if the EPA does not specifically decline the application after 180 days, it is taken as granted. In 1978 the EPA granted 10% by volume of ethanol a waiver, and have subsequently issued waivers for <10 vol% ethanol (1982), 7 vol% tertiary butyl alcohol (1979), 5.5 vol% 1:1 MeOH/TBA (1979), 3.5 mass% oxygen derived from 1:1 MeOH/TBA = ~9.5 vol% of the alcohols (1981), 3.7 mass% oxygen derived from methanol and cosolvents = 5 vol% max MeOH and 2.5 vol% min cosolvent - with some cosolvents requiring additional corrosion inhibitor (1985,1988), 7.0 vol% MTBE (1979), and 15.0 vol% MTBE (1988). Only the ethanol waiver was exempted from the requirement to still meet ASTM volatility requirements [16]. In 1981 the EPA ruled that fuels could contain aliphatic alcohols ( except MeOH ) and/or ethers at concentrations until the oxygen content is 2.0 mass%. It also permitted 5.5 vol% of 1:1 MeOH/TBA. In 1991 the maximum oxygen content was increased to 2.7 mass%. To ensure sufficient gasoline base was available for ethanol blending, the EPA also ruled that gasoline containing up to 2 vol% of MTBE could subsequently be blended with 10 vol% of ethanol [16]. Initially, the oxygenates were added to hydrocarbon fractions that were slightly-modified unleaded gasoline fractions, and these were known as "oxygenated" gasolines. In 1995, the hydrocarbon fraction was significantly modified, and these gasolines are called "reformulated gasolines" ( RFGs ), and there are differing specifications for California ( Phase 2 ) and Federal ( simple model ) RFGs, however both require oxygenates to provide Octane. The California RFG requires the hydrocarbon composition of the RFG to be significantly more modified than the existing oxygenated gasolines to reduce unsaturates, volatility, benzene, and the reactivity of emissions. Federal regulations only reduce vapour pressure and benzene directly, however aromatics are also reduced to meet emissions criteria [16]. Oxygenates that are added to gasoline function in two ways. Firstly they have high blending octane, and so can replace high octane aromatics in the fuel. These aromatics are responsible for disproportionate amounts of CO and HC exhaust emissions. This is called the "aromatic substitution effect". Oxygenates also cause engines without sophisticated engine management systems to move to the lean side of stoichiometry, thus reducing emissions of CO ( 2% oxygen can reduce CO by 16% ) and HC ( 2% oxygen can reduce HC by 10%) [17], and other researchers have observed similar reductions also occur when oxygenates are added to reformulated gasolines on older and newer vehicles, but have also shown that NOx levels may increase, as also may some regulated toxins [18,19,20]. However, on vehicles with engine management systems, the fuel volume will be increased to bring the stoichiometry back to the preferred optimum setting. Oxygen in the fuel can not contribute energy, consequently the fuel has less energy content. For the same efficiency and power output, more fuel has to be burnt, and the slight improvements in combustion efficiency that oxygenates provide on some engines usually do not completely compensate for the oxygen. There are huge number of chemical mechanisms involved in the pre-flame reactions of gasoline combustion. Although both alkyl leads and oxygenates are effective at suppressing knock, the chemical modes through which they act are entirely different. MTBE works by retarding the progress of the low temperature or cool-flame reactions, consuming radical species, particularly OH radicals and producing isobutene. The isobutene in turn consumes additional OH radicals and produces unreactive, resonantly stabilised radicals such as allyl and methyl allyl, as well as stable species such as allene, which resist further oxidation [21,22]. |