To: WWS who wrote (196 ) 1/25/1999 11:02:00 PM From: scaram(o)uche Respond to of 805
sounds very positive..... Neuroscience 1997 Mar;77(2):599-609 Addition of allogeneic spleen cells causes rejection of intrastriatal embryonic mesencephalic allografts in the rat. Duan WM, Brundin P, Widner H Wallenberg Neuroscience Center, Department of Physiology and Neuroscience, Lund University, Sweden. To address the importance of antigen-presenting cells for the survival of intracerebral neural allografts, allogeneic spleen cells were added to the graft tissue before transplantation. Dissociated embryonic, dopamine-rich mesencephalic and adult spleen tissues were prepared from either inbred Lewis or Sprague-Dawley rats. A mixture of neural and spleen cells was sterotaxically transplanted into the right striatum of adult Sprague-Dawley rats. Controls were neural allografts without addition of allogeneic spleen cells and syngeneic neural grafts with or without the addition of syngeneic spleen cells. Six weeks after transplantation, brain sections were processed immunocytochemically for tyrosine hydroxylase, specific for grafted dopamine neurons, and a bank of markers for various components in the immune and inflammatory responses. The neural allografts which were mixed with allogeneic spleen cells were rejected. In these rats, there were high levels of expression of major histocompatibility complex class I and II antigens, intense cellular infiltration including macrophages and activated microglial cells, and a presence of cluster of differentiation 4- and 8-immunoreactive cells in the graft sites. Moreover, there were increased levels of intercellular adhesion molecule-1, tumour necrosis factor-alpha and interleukin-6 in and around the grafts which were undergoing rejection. In contrast, syngeneic neural grafts survived well regardless of whether they were mixed with syngeneic spleen cells or not, and control neural allografts also exhibited unimpaired survival. No significant difference was observed in the number of grafted dopamine neurons among these three latter groups. The levels of expression of the different markers for inflammation and rejection were generally lower in these grafts than in implants of combined allogeneic neural and spleen cells. In summary, intrastriatal neural allografts, which normally survive well in our animal model, were rejected if allogeneic spleen cells from the same donor were added to the graft tissue. The added spleen cells caused strong host immune and inflammatory responses. The study gave support to the notion that immunological privilege of the brain does not provide absolute protection to immunogenetically histoincompatible neural grafts. Acta Neuropathol (Berl) 1998 Jan;95(1):85-97 Time-dependent expression of donor- and host-specific major histocompatibility complex class I and II antigens in allogeneic dopamine-rich macro- and micrografts: comparison of two different grafting protocols. Brandis A, Kuder H, Knappe U, Jodicke A, Schonmayr R, Samii M, Walter GF, Nikkhah G Institute of Neuropathology, Hanover Medical School, Germany. Neural transplantation, as a therapeutic approach to Parkinson's disease, still requires allogeneic graft material and raises questions of immunosuppression and graft rejection. The present study investigated the time course of major histocompatibility complex (MHC) expression and astrocytic response in allogeneic dopaminergic grafts, comparing two different grafting protocols. Adult 6-hydroxydopamine-lesioned Lewis 1.W rats received intrastriatal cell suspension grafts from the ventral mesencephalon of DA rat fetuses, either as single 1-microliter macrograft via metal cannula or as four micrografts of 250 nl/deposit via a glass capillary. No immunosuppression was administered. Immunohistochemistry was performed at 1, 3, 6, and 12 weeks after grafting, using antibodies against donor- and host-specific MHC class I and II antigen, glial fibrillary acidic protein (GFAP) and tyrosine hydroxylase (TH). Most animals showed good allograft survival up to 12 weeks after transplantation with no signs of rejection. Reinnervation of the lesioned striatum by TH-positive neurites was observed from 3-6 weeks on. Expression of donor-specific MHC class I was comparably low in both allogeneic grafting groups, while host MHC class I and II reaction as well as astrocytic response tended to be higher in the macrografted animals. Donor MHC class II was not observed at any time point. It is concluded that intraparenchymal allografts of fetal mesencephalic cell suspensions can survive well in the rat Parkinson model without immunosuppression for at least 12 weeks, and that the expression of moderate amounts of donor-specific MHC class I antigen does not suffice to initiate a rejection process. In addition, the microtransplantation approach may reduce the level of trauma and subsequent MHC and GFAP expression and may, thereby, minimize the risk of graft rejection.