SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Biotech / Medical : XOMA. Bull or Bear? -- Ignore unavailable to you. Want to Upgrade?


To: Bluegreen who wrote (8964)3/6/1999 8:26:00 PM
From: Bluegreen  Respond to of 17367
 
Please take note of last few sentences and realize this ain't frog juice ointment.>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>Biochim Biophys Acta 1998 Sep 16;1425(1):81-92
Designed beta-sheet-forming peptide 33mers with potent human bactericidal/permeability increasing protein-like bactericidal and endotoxin neutralizing activities.
Mayo KH, Haseman J, Ilyina E, Gray B
Department of Biochemistry, Biomedical Engineering Center, University of Minnesota Health Science Center, Minneapolis 55455, USA. mayox001@maroon.tc.umn.edu
Novel peptide 33mers have been designed by incorporating beta-conformation stabilizing residues from the beta-sheet domains of alpha-chemokines and functionally important residues from the beta-sheet domain of human neutrophil bactericidal protein (B/PI). B/PI is known for its ability to kill bacteria and to neutralize the action of bacterial endotoxin (lipopolysaccharide, LPS) which can induce septic shock leading to eventual death. Here, the goal was to make short linear peptides which demonstrate good beta-sheet folding and maintain bioactivity as in native B/PI. A library of 24 peptide 33mers (betapep-1 to betapep-24) were synthesized with various amino acid substitutions. CD and NMR data acquired in aqueous solution indicate that betapep peptides form beta-sheet structure to varying degrees and self-associate as dimers and tetramers like the alpha-chemokines. Bactericidal activity toward Gram-negative Pseudomonas aeruginosa was tested, and betapep-19 was found to be only about 5-fold less potent (62% kill at 1.2 x 10(-7) M) than native B/PI (80% kill at 2.9 x 10(-8) M). At LPS neutralization, betapep-2 and -23 were found to be most active (66-78% effective at 1.2 x 10(-6) M), being only about 50-100-fold less active than B/PI (50% at 1.5 x 10(-8) M). In terms of structure-activity relations, beta-sheet structural stability correlates with the capacity to neutralize LPS, but not with bactericidal activity. Although a net positive charge is necessary for activity, it is not sufficient for optimal activity. Hydrophobic residues tend to influence activities indirectly by affecting structural stability. Furthermore, results show that sequentially and spatially related residues from the beta-sheet domain of native B/PI can be designed into short linear peptides which show good beta-sheet folding and retain much of the native activity. This research contributes to the development of solutions to the problem of multiple drug-resistant, opportunistic microorganisms like P. aeruginosa and of agents effective at neutralizing bacterial endotoxin.




To: Bluegreen who wrote (8964)3/6/1999 8:31:00 PM
From: Bluegreen  Read Replies (1) | Respond to of 17367
 
How many of you knew BPI was also in eosinophils?>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>The bactericidal/permeability-increasing protein (BPI) is present in specific granules of human eosinophils.
Calafat J, Janssen H, Tool A, Dentener MA, Knol EF, Rosenberg HF, Egesten A
Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
Eosinophils participate in the inflammatory response seen in allergy and parasitic infestation, but a role in host defense against bacterial infection is not settled. The bactericidal/permeability-increasing protein (BPI) has been demonstrated in neutrophils and it exerts bacteriostatic and bactericidal effects against a wide variety of Gram-negative bacterial species. Using the Western blot technique, a 55-kD band, corresponding to BPI, was detected in lysates from both neutrophils and eosinophils. The localization of BPI in immature and mature eosinophils was investigated using immunoelectron microscopy. BPI was found in immature and mature specific granules of eosinophils and was detected in phagosomes as well, indicating release of the protein from the granules into the phagosomes. Using a specific enzyme-linked immunosorbent assay, eosinophils were shown to contain 179 ng of BPI/5 x 10(6) eosinophils compared with 710 ng BPI/5 x 10(6) neutrophils. The presence of BPI in eosinophils suggests a role for these cells in host defense against Gram-negative bacterial invasion or may suggest a role for BPI against parasitic infestation.