SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Biotech / Medical : RNAi

 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext  
To: tuck who wrote (377)6/17/2005 12:04:05 PM
From: A.J. Mullen  Read Replies (1) of 671
 
RNAI in apoptosis. Lifted from posting of Ian@SI on Biotech News thread.
 
Basic research
Public release date: 10-Jun-2005
Contact: Leah Gourley
public_affairs@hms.harvard.edu
617-432-0442
Harvard Medical School
New regulators of apoptosis and chemoresistance identified
BOSTON--Using targeted RNA interference, or RNAi libraries, researchers at Harvard Medical School describe the first large-scale classification of kinase and phosphatase gene families on the basis of their role in apoptosis and cell survival. This study appears in the June issue of Nature Cell Biology.
Jeffrey MacKeigan, former HMS research fellow in cell biology now working at Novartis Institutes for Biomedical Research, and colleagues utilized RNAi to systematically screen the kinase and phosphatase component of the human genome. They found that 11 percent of kinases control cell survival. As expected, this research identified known survival kinases (such as SGK, AKT2, and PKC), members of the AGC family of kinases, and several novel regulators of apoptosis and chemoresistance.
"Interestingly, 32 percent of phosphatases and their regulatory subunits contribute to cell survival," said MacKeigan, "revealing a previously unrecognized general role for phosphatases as negative regulators of apoptosis. This is important because phosphatases cannot be simply viewed as enzymes that oppose the action of kinases and can have a positive role in cell survival."
The researchers also identified a group of phosphatases whose loss of function results in chemoresistance and implicates these phosphatases as potential tumor suppressors.
"Down regulation of many of these tumor suppressor phosphatases resulted in a marked cellular resistance to conventional chemotherapeutic agents. Therefore, finding out whether some of these phosphatases have inactivating mutations in specific cancers may help overcome drug resistance," said MacKeigan.
Additionally, the study showed that down regulation of survival kinases using RNAi sensitizes resistant cells to low concentrations of chemotherapeutic agents, emphasizing that these kinases may be important drug targets. This highlights the potential future use of either RNAi or small molecule inhibitors to selectively sensitize tumor cells to cell death and therefore may result in less toxicity to normal cells.
###
HARVARD MEDICAL SCHOOL
Report TOU ViolationShare This Post
 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext