SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Technology Stocks : Access Anywhere, Anytime. Cell Phones/PDA's join the Net -- Ignore unavailable to you. Want to Upgrade?


To: gdichaz who wrote (130)8/9/1999 11:58:00 PM
From: Mark Oliver  Respond to of 332
 
Chaz and all, here is some presentation information from the recent WAP users conference courtesy of Pat Mudge.

www-2.phone.com

Regards,

Mark



To: gdichaz who wrote (130)8/10/1999 12:23:00 AM
From: DOUG H  Respond to of 332
 
chaz, I wonder if this has something to do with it.

To: DOUG H
From: Walkingshadow Saturday, Jul 17 1999 3:19AM ET

DH----

This is the LA Times article I was telling you about.

You heard it here first:
20 years from now, a molecular computer with the power of 100 Cray supercomputers will be swallowed, absorbed, and travel to a site in the body predetermined by attaching an appropriate receptor (say, for instance, one specific for a cancerous cell) on the surface of the oral molecular computer. Once there, it will take over the genetic machinery and begin "directing traffic" according to fully programmable (and re-programmable) templates based upon our increasing knowledge of the human genome and the details of the function of each gene encoded therein.....

And here is how it all began:
======================================================================
Molecular Computer Takes a Major Stride
Technology: Research points the way to microprocessors that dwarf the power of today's silicon-based devices.
By ASHLEY DUNN, Times Staff Writer

Scientists at UCLA and Hewlett-Packard Laboratories have created the first crude components of a computer based not on silicon, but on exotic molecules that could lead to microprocessors billions of times more powerful and compact than today's most advanced devices.
The scientists, led by UCLA chemistry professor James Heath, used a class of complex organic chemicals known as rotaxanes to construct simple logic gates--the building blocks of all digital computers--the group reported in a paper published today in the journal Science.
"We can potentially get the computational power of 100 workstations on the size of a grain of sand," Heath said. "I'm hopeful we can do it in about a decade."
By sandwiching a thin film of rotaxanes between a grid of etched wires, the scientists were able to configure the molecules at each junction point to perform basic logical functions.
It marks one of the first demonstrations of how molecular components can be linked and configured to create a computing device.
Dan Herr, director of material and process science at the North Carolina-based Semiconductor Research Corp., a nonprofit research consortium, said the work by UCLA and Hewlett-Packard is one of the few designs in the field of molecular computing that seems to be buildable.
"Their approach is a significant step," he said. "It's still definitely in the research domain, but this is the closest thing I've seen to a molecular computer."
The development of molecular computing components comes at a time when the traditional method of etching circuits on silicon is facing the physical limitations of miniaturization.
Silicon chips are made through a process known as photolithography, in which light is used to etch circuits onto photosensitive chips.
Packing more components onto a chip means etching thinner lines on the chip, which requires ever more exotic light sources. Packing millions of components onto a chip has sent the cost of chip plants into the billions of dollars.
Molecular devices have been an attractive possibility, for they are the tiniest possible devices that could be built.
But the idea has always been on the fringe of computer science, largely because of the difficulty of dealing with chemical components and controlling interactions at the molecular level.
Heath's solution, developed with the help of postdoctoral students Pat Collier and Eric Wong, revolves around the distinctive characteristics of rotaxanes--a group of molecules that resemble a barbell with a ring around it.
The molecules are easy to manipulate and align into a tightly packed, uniform array.
The group created logic gates out of the sandwich of etched wires and rotaxanes by either leaving a junction point untouched or by applying high voltage, essentially breaking the link between the two ends of the barbell, thus altering the electrical characteristics of the molecule.
Heath said the next step is to group several of the logic gates together to form a logic circuit capable of performing basic computing functions such as addition.
"Once you have [that], you can do everything," he said.
"We should be able to configure these wires and switches to do what a very complicated silicon-based circuit does, including performing logic operations, providing memory, and routing signals through the machine and to the outside world."
Copyright 1999 Los Angeles Times. All Rights Reserved