To: TigerPaw who wrote (25004 ) 7/20/2000 3:51:48 PM From: Daniel Schuh Read Replies (2) | Respond to of 769667 TP, on that specific subject, here's an excerpt and link about how that 135,000 year figure was estimated.theatlantic.com . The view that dogs came along at about the same time as human beings settled down is so widespread and so often repeated in standard texts that it is more than a bit surprising to find genetic evidence flatly contradicting it. The evidence comes from a study by Robert Wayne, an evolutionary biologist at the University of California at Los Angeles, who has applied the modern tools of genetic fingerprinting to dogs, coyotes, wolves, and jackals. He and his colleagues collected blood, tissue, or hair samples from 140 dogs of sixty-seven breeds and 162 wolves from three continents. To gauge how closely related these various canines were and when they might have diverged from a common ancestor, the scientists measured differences in their mitochondrial DNA. Mitochondria are like small cells within the cells of animals; they convert stored food into energy with the assistance of oxygen, and they also have the peculiarity -- much cherished by geneticists -- of reproducing asexually, independent of the rest of the cell. The regular DNA of an animal cell derives equally from both parents. Mitochondrial DNA, however, comes entirely from the mitochondrial DNA of the mother. In normal sexual reproduction genetic change from one generation to the next is very rapid, as the parental genes are mixed and remixed in new combinations. Mitochondrial DNA, in contrast, can change only by mutation, which takes place quite slowly -- at a rate of around one or two percent every 100,000 years. That means that mitochondrial DNA can be used as an evolutionary chronometer. Wolves and coyotes differ by about six percent in their mitochondrial DNA, and, according to fossil evidence, separated from a common ancestor about a million years ago. Wolves and dogs differ by about one percent; using the wolf-coyote time scale, this suggests that they parted company about 135,000 years ago -- a lot earlier than the date implied by the first distinctly non-wolflike dog fossil. . . . I think coyotes can still interbreed with wolves too.There's also evidence thatt there wasn't much cross-fertilization from wolves, once the dog population had separated: Even if the step from wolf to dog was a small one, it apparently didn't happen very often. Wayne found that the dog mitochondrial DNA sequences fell into four major groups. If there had been a continual influx of new wolf blood into the dog population (that is, if the dog had been reinvented again and again from wild populations at different times), such distinct grouping would not have occurred. Wayne's conclusion is that the earliest dogs "must have been integrated somehow into human society" to keep them genetically isolated from the surrounding population of wild wolves, and also that the domestication of dogs from wild populations must have been "a rare event" -- something that happened only a few times in history. Cheers, Dan.