Few experts now deny that the low-fat message is radically oversimplified. If nothing else, it effectively ignores the fact that unsaturated fats, like olive oil, are relatively good for you: they tend to elevate your good cholesterol, high-density lipoprotein (H.D.L.), and lower your bad cholesterol, low-density lipoprotein (L.D.L.), at least in comparison to the effect of carbohydrates. While higher L.D.L. raises your heart-disease risk, higher H.D.L. reduces it.
What this means is that even saturated fats -- a k a, the bad fats -- are not nearly as deleterious as you would think. True, they will elevate your bad cholesterol, but they will also elevate your good cholesterol. In other words, it's a virtual wash. As Willett explained to me, you will gain little to no health benefit by giving up milk, butter and cheese and eating bagels instead.
But it gets even weirder than that. Foods considered more or less deadly under the low-fat dogma turn out to be comparatively benign if you actually look at their fat content. More than two-thirds of the fat in a porterhouse steak, for instance, will definitively improve your cholesterol profile (at least in comparison with the baked potato next to it); it's true that the remainder will raise your L.D.L., the bad stuff, but it will also boost your H.D.L. The same is true for lard. If you work out the numbers, you come to the surreal conclusion that you can eat lard straight from the can and conceivably reduce your risk of heart disease.
The crucial example of how the low-fat recommendations were oversimplified is shown by the impact -- potentially lethal, in fact -- of low-fat diets on triglycerides, which are the component molecules of fat. By the late 60's, researchers had shown that high triglyceride levels were at least as common in heart-disease patients as high L.D.L. cholesterol, and that eating a low-fat, high-carbohydrate diet would, for many people, raise their triglyceride levels, lower their H.D.L. levels and accentuate what Gerry Reaven, an endocrinologist at Stanford University, called Syndrome X. This is a cluster of conditions that can lead to heart disease and Type 2 diabetes.
It took Reaven a decade to convince his peers that Syndrome X was a legitimate health concern, in part because to accept its reality is to accept that low-fat diets will increase the risk of heart disease in a third of the population. ''Sometimes we wish it would go away because nobody knows how to deal with it,'' said Robert Silverman, an N.I.H. researcher, at a 1987 N.I.H. conference. ''High protein levels can be bad for the kidneys. High fat is bad for your heart. Now Reaven is saying not to eat high carbohydrates. We have to eat something.''
Surely, everyone involved in drafting the various dietary guidelines wanted Americans simply to eat less junk food, however you define it, and eat more the way they do in Berkeley, Calif. But we didn't go along. Instead we ate more starches and refined carbohydrates, because calorie for calorie, these are the cheapest nutrients for the food industry to produce, and they can be sold at the highest profit. It's also what we like to eat. Rare is the person under the age of 50 who doesn't prefer a cookie or heavily sweetened yogurt to a head of broccoli.
''All reformers would do well to be conscious of the law of unintended consequences,'' says Alan Stone, who was staff director for McGovern's Senate committee. Stone told me he had an inkling about how the food industry would respond to the new dietary goals back when the hearings were first held. An economist pulled him aside, he said, and gave him a lesson on market disincentives to healthy eating: ''He said if you create a new market with a brand-new manufactured food, give it a brand-new fancy name, put a big advertising budget behind it, you can have a market all to yourself and force your competitors to catch up. You can't do that with fruits and vegetables. It's harder to differentiate an apple from an apple.''
Nutrition researchers also played a role by trying to feed science into the idea that carbohydrates are the ideal nutrient. It had been known, for almost a century, and considered mostly irrelevant to the etiology of obesity, that fat has nine calories per gram compared with four for carbohydrates and protein. Now it became the fail-safe position of the low-fat recommendations: reduce the densest source of calories in the diet and you will lose weight. Then in 1982, J.P. Flatt, a University of Massachusetts biochemist, published his research demonstrating that, in any normal diet, it is extremely rare for the human body to convert carbohydrates into body fat. This was then misinterpreted by the media and quite a few scientists to mean that eating carbohydrates, even to excess, could not make you fat -- which is not the case, Flatt says. But the misinterpretation developed a vigorous life of its own because it resonated with the notion that fat makes you fat and carbohydrates are harmless.
As a result, the major trends in American diets since the late 70's, according to the U.S.D.A. agricultural economist Judith Putnam, have been a decrease in the percentage of fat calories and a ''greatly increased consumption of carbohydrates.'' To be precise, annual grain consumption has increased almost 60 pounds per person, and caloric sweeteners (primarily high-fructose corn syrup) by 30 pounds. At the same time, we suddenly began consuming more total calories: now up to 400 more each day since the government started recommending low-fat diets.
If these trends are correct, then the obesity epidemic can certainly be explained by Americans' eating more calories than ever -- excess calories, after all, are what causes us to gain weight -- and, specifically, more carbohydrates. The question is why?
The answer provided by Endocrinology 101 is that we are simply hungrier than we were in the 70's, and the reason is physiological more than psychological. In this case, the salient factor -- ignored in the pursuit of fat and its effect on cholesterol -- is how carbohydrates affect blood sugar and insulin. In fact, these were obvious culprits all along, which is why Atkins and the low-carb-diet doctors pounced on them early.
The primary role of insulin is to regulate blood-sugar levels. After you eat carbohydrates, they will be broken down into their component sugar molecules and transported into the bloodstream. Your pancreas then secretes insulin, which shunts the blood sugar into muscles and the liver as fuel for the next few hours. This is why carbohydrates have a significant impact on insulin and fat does not. And because juvenile diabetes is caused by a lack of insulin, physicians believed since the 20's that the only evil with insulin is not having enough.
But insulin also regulates fat metabolism. We cannot store body fat without it. Think of insulin as a switch. When it's on, in the few hours after eating, you burn carbohydrates for energy and store excess calories as fat. When it's off, after the insulin has been depleted, you burn fat as fuel. So when insulin levels are low, you will burn your own fat, but not when they're high.
This is where it gets unavoidably complicated. The fatter you are, the more insulin your pancreas will pump out per meal, and the more likely you'll develop what's called ''insulin resistance,'' which is the underlying cause of Syndrome X. In effect, your cells become insensitive to the action of insulin, and so you need ever greater amounts to keep your blood sugar in check. So as you gain weight, insulin makes it easier to store fat and harder to lose it. But the insulin resistance in turn may make it harder to store fat -- your weight is being kept in check, as it should be. But now the insulin resistance might prompt your pancreas to produce even more insulin, potentially starting a vicious cycle. Which comes first -- the obesity, the elevated insulin, known as hyperinsulinemia, or the insulin resistance -- is a chicken-and-egg problem that hasn't been resolved. One endocrinologist described this to me as ''the Nobel-prize winning question.''
Insulin also profoundly affects hunger, although to what end is another point of controversy. On the one hand, insulin can indirectly cause hunger by lowering your blood sugar, but how low does blood sugar have to drop before hunger kicks in? That's unresolved. Meanwhile, insulin works in the brain to suppress hunger. The theory, as explained to me by Michael Schwartz, an endocrinologist at the University of Washington, is that insulin's ability to inhibit appetite would normally counteract its propensity to generate body fat. In other words, as you gained weight, your body would generate more insulin after every meal, and that in turn would suppress your appetite; you'd eat less and lose the weight.
Schwartz, however, can imagine a simple mechanism that would throw this ''homeostatic'' system off balance: if your brain were to lose its sensitivity to insulin, just as your fat and muscles do when they are flooded with it. Now the higher insulin production that comes with getting fatter would no longer compensate by suppressing your appetite, because your brain would no longer register the rise in insulin. The end result would be a physiologic state in which obesity is almost preordained, and one in which the carbohydrate-insulin connection could play a major role. Schwartz says he believes this could indeed be happening, but research hasn't progressed far enough to prove it. ''It is just a hypothesis,'' he says. ''It still needs to be sorted out.''
David Ludwig, the Harvard endocrinologist, says that it's the direct effect of insulin on blood sugar that does the trick. He notes that when diabetics get too much insulin, their blood sugar drops and they get ravenously hungry. They gain weight because they eat more, and the insulin promotes fat deposition. The same happens with lab animals. This, he says, is effectively what happens when we eat carbohydrates -- in particular sugar and starches like potatoes and rice, or anything made from flour, like a slice of white bread. These are known in the jargon as high-glycemic-index carbohydrates, which means they are absorbed quickly into the blood. As a result, they cause a spike of blood sugar and a surge of insulin within minutes. The resulting rush of insulin stores the blood sugar away and a few hours later, your blood sugar is lower than it was before you ate. As Ludwig explains, your body effectively thinks it has run out of fuel, but the insulin is still high enough to prevent you from burning your own fat. The result is hunger and a craving for more carbohydrates. It's another vicious circle, and another situation ripe for obesity.
The glycemic-index concept and the idea that starches can be absorbed into the blood even faster than sugar emerged in the late 70's, but again had no influence on public health recommendations, because of the attendant controversies. To wit: if you bought the glycemic-index concept, then you had to accept that the starches we were supposed to be eating 6 to 11 times a day were, once swallowed, physiologically indistinguishable from sugars. This made them seem considerably less than wholesome. Rather than accept this possibility, the policy makers simply allowed sugar and corn syrup to elude the vilification that befell dietary fat. After all, they are fat-free.
Sugar and corn syrup from soft drinks, juices and the copious teas and sports drinks now supply more than 10 percent of our total calories; the 80's saw the introduction of Big Gulps and 32-ounce cups of Coca-Cola, blasted through with sugar, but 100 percent fat free. When it comes to insulin and blood sugar, these soft drinks and fruit juices -- what the scientists call ''wet carbohydrates'' -- might indeed be worst of all. (Diet soda accounts for less than a quarter of the soda market.)
The gist of the glycemic-index idea is that the longer it takes the carbohydrates to be digested, the lesser the impact on blood sugar and insulin and the healthier the food. Those foods with the highest rating on the glycemic index are some simple sugars, starches and anything made from flour. Green vegetables, beans and whole grains cause a much slower rise in blood sugar because they have fiber, a nondigestible carbohydrate, which slows down digestion and lowers the glycemic index. Protein and fat serve the same purpose, which implies that eating fat can be beneficial, a notion that is still unacceptable. And the glycemic-index concept implies that a primary cause of Syndrome X, heart disease, Type 2 diabetes and obesity is the long-term damage caused by the repeated surges of insulin that come from eating starches and refined carbohydrates. This suggests a kind of unified field theory for these chronic diseases, but not one that coexists easily with the low-fat doctrine.
At Ludwig's pediatric obesity clinic, he has been prescribing low-glycemic-index diets to children and adolescents for five years now. He does not recommend the Atkins diet because he says he believes such a very low carbohydrate approach is unnecessarily restrictive; instead, he tells his patients to effectively replace refined carbohydrates and starches with vegetables, legumes and fruit. This makes a low-glycemic-index diet consistent with dietary common sense, albeit in a higher-fat kind of way. His clinic now has a nine-month waiting list. Only recently has Ludwig managed to convince the N.I.H. that such diets are worthy of study. His first three grant proposals were summarily rejected, which may explain why much of the relevant research has been done in Canada and in Australia. In April, however, Ludwig received $1.2 million from the N.I.H. to test his low-glycemic-index diet against a traditional low-fat-low-calorie regime. That might help resolve some of the controversy over the role of insulin in obesity, although the redoubtable Robert Atkins might get there first.
The 71-year-old Atkins, a graduate of Cornell medical school, says he first tried a very low carbohydrate diet in 1963 after reading about one in the Journal of the American Medical Association. He lost weight effortlessly, had his epiphany and turned a fledgling Manhattan cardiology practice into a thriving obesity clinic. He then alienated the entire medical community by telling his readers to eat as much fat and protein as they wanted, as long as they ate little to no carbohydrates. They would lose weight, he said, because they would keep their insulin down; they wouldn't be hungry; and they would have less resistance to burning their own fat. Atkins also noted that starches and sugar were harmful in any event because they raised triglyceride levels and that this was a greater risk factor for heart disease than cholesterol.
Atkins's diet is both the ultimate manifestation of the alternative hypothesis as well as the battleground on which the fat-versus-carbohydrates controversy is likely to be fought scientifically over the next few years. After insisting Atkins was a quack for three decades, obesity experts are now finding it difficult to ignore the copious anecdotal evidence that his diet does just what he has claimed. Take Albert Stunkard, for instance. Stunkard has been trying to treat obesity for half a century, but he told me he had his epiphany about Atkins and maybe about obesity as well just recently when he discovered that the chief of radiology in his hospital had lost 60 pounds on Atkins's diet. ''Well, apparently all the young guys in the hospital are doing it,'' he said. ''So we decided to do a study.'' When I asked Stunkard if he or any of his colleagues considered testing Atkins's diet 30 years ago, he said they hadn't because they thought Atkins was ''a jerk'' who was just out to make money: this ''turned people off, and so nobody took him seriously enough to do what we're finally doing.''
In fact, when the American Medical Association released its scathing critique of Atkins's diet in March 1973, it acknowledged that the diet probably worked, but expressed little interest in why. Through the 60's, this had been a subject of considerable research, with the conclusion that Atkins-like diets were low-calorie diets in disguise; that when you cut out pasta, bread and potatoes, you'll have a hard time eating enough meat, vegetables and cheese to replace the calories.
That, however, raised the question of why such a low-calorie regimen would also suppress hunger, which Atkins insisted was the signature characteristic of the diet. One possibility was Endocrinology 101: that fat and protein make you sated and, lacking carbohydrates and the ensuing swings of blood sugar and insulin, you stay sated. The other possibility arose from the fact that Atkins's diet is ''ketogenic.'' This means that insulin falls so low that you enter a state called ketosis, which is what happens during fasting and starvation. Your muscles and tissues burn body fat for energy, as does your brain in the form of fat molecules produced by the liver called ketones. Atkins saw ketosis as the obvious way to kick-start weight loss. He also liked to say that ketosis was so energizing that it was better than sex, which set him up for some ridicule. An inevitable criticism of Atkins's diet has been that ketosis is dangerous and to be avoided at all costs.
When I interviewed ketosis experts, however, they universally sided with Atkins, and suggested that maybe the medical community and the media confuse ketosis with ketoacidosis, a variant of ketosis that occurs in untreated diabetics and can be fatal. ''Doctors are scared of ketosis,'' says Richard Veech, an N.I.H. researcher who studied medicine at Harvard and then got his doctorate at Oxford University with the Nobel Laureate Hans Krebs. ''They're always worried about diabetic ketoacidosis. But ketosis is a normal physiologic state. I would argue it is the normal state of man. It's not normal to have McDonald's and a delicatessen around every corner. It's normal to starve.''
Simply put, ketosis is evolution's answer to the thrifty gene. We may have evolved to efficiently store fat for times of famine, says Veech, but we also evolved ketosis to efficiently live off that fat when necessary. Rather than being poison, which is how the press often refers to ketones, they make the body run more efficiently and provide a backup fuel source for the brain. Veech calls ketones ''magic'' and has shown that both the heart and brain run 25 percent more efficiently on ketones than on blood sugar.
The bottom line is that for the better part of 30 years Atkins insisted his diet worked and was safe, Americans apparently tried it by the tens of millions, while nutritionists, physicians, public- health authorities and anyone concerned with heart disease insisted it could kill them, and expressed little or no desire to find out who was right. During that period, only two groups of U.S. researchers tested the diet, or at least published their results. In the early 70's, J.P. Flatt and Harvard's George Blackburn pioneered the ''protein-sparing modified fast'' to treat postsurgical patients, and they tested it on obese volunteers. Blackburn, who later became president of the American Society of Clinical Nutrition, describes his regime as ''an Atkins diet without excess fat'' and says he had to give it a fancy name or nobody would take him seriously. The diet was ''lean meat, fish and fowl'' supplemented by vitamins and minerals. ''People loved it,'' Blackburn recalls. ''Great weight loss. We couldn't run them off with a baseball bat.'' Blackburn successfully treated hundreds of obese patients over the next decade and published a series of papers that were ignored. When obese New Englanders turned to appetite-control drugs in the mid-80's, he says, he let it drop. He then applied to the N.I.H. for a grant to do a clinical trial of popular diets but was rejected.
The second trial, published in September 1980, was done at the George Washington University Medical Center. Two dozen obese volunteers agreed to follow Atkins's diet for eight weeks and lost an average of 17 pounds each, with no apparent ill effects, although their L.D.L. cholesterol did go up. The researchers, led by John LaRosa, now president of the State University of New York Downstate Medical Center in Brooklyn, concluded that the 17-pound weight loss in eight weeks would likely have happened with any diet under ''the novelty of trying something under experimental conditions'' and never pursued it further.
Now researchers have finally decided that Atkins's diet and other low-carb diets have to be tested, and are doing so against traditional low-calorie-low-fat diets as recommended by the American Heart Association. To explain their motivation, they inevitably tell one of two stories: some, like Stunkard, told me that someone they knew -- a patient, a friend, a fellow physician -- lost considerable weight on Atkins's diet and, despite all their preconceptions to the contrary, kept it off. Others say they were frustrated with their inability to help their obese patients, looked into the low-carb diets and decided that Endocrinology 101 was compelling. ''As a trained physician, I was trained to mock anything like the Atkins diet,'' says Linda Stern, an internist at the Philadelphia Veterans Administration Hospital, ''but I put myself on the diet. I did great. And I thought maybe this is something I can offer my patients.''
None of these studies have been financed by the N.I.H., and none have yet been published. But the results have been reported at conferences -- by researchers at Schneider Children's Hospital on Long Island, Duke University and the University of Cincinnati, and by Stern's group at the Philadelphia V.A. Hospital. And then there's the study Stunkard had mentioned, led by Gary Foster at the University of Pennsylvania, Sam Klein, director of the Center for Human Nutrition at Washington University in St. Louis, and Jim Hill, who runs the University of Colorado Center for Human Nutrition in Denver. The results of all five of these studies are remarkably consistent. Subjects on some form of the Atkins diet -- whether overweight adolescents on the diet for 12 weeks as at Schneider, or obese adults averaging 295 pounds on the diet for six months, as at the Philadelphia V.A. -- lost twice the weight as the subjects on the low-fat, low-calorie diets.
In all five studies, cholesterol levels improved similarly with both diets, but triglyceride levels were considerably lower with the Atkins diet. Though researchers are hesitant to agree with this, it does suggest that heart-disease risk could actually be reduced when fat is added back into the diet and starches and refined carbohydrates are removed. ''I think when this stuff gets to be recognized,'' Stunkard says, ''it's going to really shake up a lot of thinking about obesity and metabolism.''
All of this could be settled sooner rather than later, and with it, perhaps, we might have some long-awaited answers as to why we grow fat and whether it is indeed preordained by societal forces or by our choice of foods. For the first time, the N.I.H. is now actually financing comparative studies of popular diets. Foster, Klein and Hill, for instance, have now received more than $2.5 million from N.I.H. to do a five-year trial of the Atkins diet with 360 obese individuals. At Harvard, Willett, Blackburn and Penelope Greene have money, albeit from Atkins's nonprofit foundation, to do a comparative trial as well.
Should these clinical trials also find for Atkins and his high-fat, low-carbohydrate diet, then the public-health authorities may indeed have a problem on their hands. Once they took their leap of faith and settled on the low-fat dietary dogma 25 years ago, they left little room for contradictory evidence or a change of opinion, should such a change be necessary to keep up with the science. In this light Sam Klein's experience is noteworthy. Klein is president-elect of the North American Association for the Study of Obesity, which suggests that he is a highly respected member of his community. And yet, he described his recent experience discussing the Atkins diet at medical conferences as a learning experience. ''I have been impressed,'' he said, ''with the anger of academicians in the audience. Their response is 'How dare you even present data on the Atkins diet!' ''
This hostility stems primarily from their anxiety that Americans, given a glimmer of hope about their weight, will rush off en masse to try a diet that simply seems intuitively dangerous and on which there is still no long-term data on whether it works and whether it is safe. It's a justifiable fear. In the course of my research, I have spent my mornings at my local diner, staring down at a plate of scrambled eggs and sausage, convinced that somehow, some way, they must be working to clog my arteries and do me in.
After 20 years steeped in a low-fat paradigm, I find it hard to see the nutritional world any other way. I have learned that low-fat diets fail in clinical trials and in real life, and they certainly have failed in my life. I have read the papers suggesting that 20 years of low-fat recommendations have not managed to lower the incidence of heart disease in this country, and may have led instead to the steep increase in obesity and Type 2 diabetes. I have interviewed researchers whose computer models have calculated that cutting back on the saturated fats in my diet to the levels recommended by the American Heart Association would not add more than a few months to my life, if that. I have even lost considerable weight with relative ease by giving up carbohydrates on my test diet, and yet I can look down at my eggs and sausage and still imagine the imminent onset of heart disease and obesity, the latter assuredly to be caused by some bizarre rebound phenomena the likes of which science has not yet begun to describe. The fact that Atkins himself has had heart trouble recently does not ease my anxiety, despite his assurance that it is not diet-related.
This is the state of mind I imagine that mainstream nutritionists, researchers and physicians must inevitably take to the fat-versus-carbohydrate controversy. They may come around, but the evidence will have to be exceptionally compelling. Although this kind of conversion may be happening at the moment to John Farquhar, who is a professor of health research and policy at Stanford University and has worked in this field for more than 40 years. When I interviewed Farquhar in April, he explained why low-fat diets might lead to weight gain and low-carbohydrate diets might lead to weight loss, but he made me promise not to say he believed they did. He attributed the cause of the obesity epidemic to the ''force-feeding of a nation.'' Three weeks later, after reading an article on Endocrinology 101 by David Ludwig in the Journal of the American Medical Association, he sent me an e-mail message asking the not-entirely-rhetorical question, ''Can we get the low-fat proponents to apologize?''
Gary Taubes is a correspondent for the journal Science and author of ''Bad Science: The Short Life and Weird Times of Cold Fusion.'' |